
Software Engineering methodology
Lecture 6, 17.2.2014

Kari Systä

About assignment

• Start work now!

• Sprint meeting scheduling comes to IDLE
today or tomorrow

• Deadline on Friday

• Be responsive to other members

– Assistants can give permission for teams to kick-
out passive members.

Initial content of lectures
• Introduction
• Life-cycle models, their

background
• Project management, product

management, project planning –
in general management aspects

• Scrum in details
• Requirement elicitation,

requirement management,
requirements prioritization

• New trends: Lean, Kanban,
Customer Development and
DevOps details

• Review practices, testing and
quality assurance (TIE-21200 will
go deeper)

• Version management,
configuration management,
continuous integration

• Architecture issues, role of
architect, architectural quality
attributes, product families, ….
(TIE-21300 will go deeper)

• “Quality systems” and process
improvement

• Embedded and real-time systems
(other courses will go deeper)

• Safety-critical and dependable
systems

• Effort estimation
• Software business, software

start-ups
• Recap

10.02.2014 TIE-22100/22106 3

Today’s lecture

• Recap and summary of previous lecture

• Principles of Lean

• Kanban

• DevOps

• Lean Startup

• Continuous Deloployment

Couple of points about requirements
(wording by prof Pekka Abrahamsson, Bolzano)

Cheap to implement

Expensive to implement

Low
business
value

High
business
value

Must have
features

Risky features:
Should be first
in the todo list

Crazy: These
features

will deteroriate
your system

Dangerous:
Adding

unnecessary
complexity

About value of features
(Rust R.T., Thompson D.V., and Hamilton R.W. Quelle: Defeating Feature Fatique in Make Sure All

Your Products are Profitable, 2nd edition, s. 38-48, Harward Business Review, February 2006.)

Requirements management

10.02.2014 TIE-22100/22106 7

Elicitation

Triage
(prioritization)

Specification
(documentation)

-Elicitation
- Documentation
- Prioritization

Change
process

Approved
requirements

For next releases

Requirements definition

Requirements management

Change requests Changes in
projects

Approved
changes

Requirements definition vs management

10.02.2014 TIE-22100/22106 8

Documentation is a crucial part of
waterfall

(one possible example)

10.02.2014 TIE-22100/22106 9

System

requirements

Software

requirements

Analysis

Program

design

Coding

Testing

Operations Maintenance

-Elicitation
- Documentation
- Prioritization

Change
process

Approved
requirements

For next releases

Requirements definition

Requirements management

Change requests Changes in
projects

Approved
changes

But as Sommerville describes it

Plan-driven vs. agile specification

10.02.2014 TIE-22100/22106 10

Requirements
engineering

Design and
implementation

Requirements
specification

Requirements
engineering

Design and
implementation

Iterative, agile

10.02.2014

11

Vendor

Customer

research

Spec.

imp

test

Deploym.

Tender call

bid

Bid a.

spec. Deploym.

SW

SW

imp

test

SW

SW

imp

test

imp

test

SW

SW

TIE-22100/22106

LEAN SW DEVELOPMENT

10.02.2014 TIE-22100/22106 12

http://en.wikipedia.org/wiki/Lean_sof
tware_development

• Lean software development (LSD) is a translation
of lean manufacturing and lean IT principles and
practices to the software development domain.
Adapted from the Toyota Production System, a
pro-lean subculture is emerging from within the
Agile community.

• The term lean software development originated
in a book by the same name, written by Mary
Poppendieck and Tom Poppendieck. The book
presents the traditional lean principles in a
modified form, as well as a set of 22 tools and
compares the tools to agile practices.

Toyota Way
(http://www.toyotaway.com/)

What is lean?

• Providing value to your customer by reducing
wasteful practices

• Philosophy comes from the world famous
Toyota Production System

• Preserving value with less work

• Recognize profit potentials through
elimination of wasteful production practices

Toyota Way 14 Principles
(http://icos.groups.si.umich.edu//Liker04.pdf)

Section III: Add Value to the Organization by Developing Your People
• Principle 9. Grow leaders who thoroughly understand the work, live

the philosophy, and teach it to others.
• Principle 10. Develop exceptional people and teams who follow

your company’s philosophy.
• Principle 11. Respect your extended network of partners and

suppliers by challenging them and helping them improve.
Section IV: Continuously Solving Root Problems Drives Organizational
Learning
• Principle 12. Go and see for yourself to thoroughly understand the

situation (genchi genbutsu).
• Principle 13. Make decisions slowly by consensus, thoroughly

considering all options; implement decisions rapidly (nemawashi).
• Principle 14. Become a learning organization through relentless

reflection (hansei) and continuous improvement (kaizen).

Toyota Way 14 Principles
(http://icos.groups.si.umich.edu//Liker04.pdf)

Section I: Long-Term Philosophy
• Principle 1. Base your management decisions on a long-term

philosophy, even at the expense of short-term financial goals.
Section II: The Right Process Will Produce the Right Results
• Principle 2. Create a continuous process flow to bring problems to

the surface.
• Principle 3. Use “pull” systems to avoid overproduction.
• Principle 4. Level out the workload (heijunka). (Work like the

tortoise, not the hare.)
• Principle 5. Build a culture of stopping to fix problems, to get quality

right the first time.
• Principle 6. Standardized tasks and processes are the foundation for

continuous improvement and employee empowerment.
• Principle 7. Use visual control so no problems are hidden.
• Principle 8. Use only reliable, thoroughly tested technology that

serves your people and processes.

http://www.toyota.eu

Continuous
improvement

thoroughly understand
the situation

Principles of Lean SW Development

Wikipedia

• Eliminate waste

• Amplify learning

• Decide as late as possible

• Deliver as fast as possible

• Empower the team

• Build integrity in

• See the whole

www.poppendieck.com

• Eliminate Waste

• Keep getting better

• Learn first

• Deliver fast

• Energize workers

• Build quality in

• Focus on customers

http://www.poppendieck.com/

Eliminate Waste
Wikipedia
Lean philosophy regards everything
not adding value to the customer as
waste (muda). Such waste may
include:
• unnecessary code and

functionality
• delay in the software

development process
• unclear requirements
• insufficient testing (leading to

avoidable process repetition)
• bureaucracy
• slow internal communication

Poppendick:
The three biggest wastes in product
development are:
• Building the Wrong Thing

"There is nothing so useless as
doing efficiently that which
should not be done at all." –
Peter Drucker

• Building the Thing Wrong
If it seems like there is not
enough time to build it right, then
there certainly is not enough time
NOT to build it right.

• A Batch and Queue Mentality
Work in progress hides defects,
gets obsolete, causes task
switching, and delays realization
of value.

Amplify learning; Keep getting better

The best approach for improving a
software development environment
is to amplify learning.
The accumulation of defects should
be prevented by running tests as
soon as the code is written.
Instead of adding more
documentation or detailed planning,
different ideas could be tried by
writing code and building.
The process of user requirements
gathering could be simplified by
presenting screens to the end-users
and getting their input.
The learning process is sped up by
usage of short iteration cycles – each
one coupled with refactoring and
integration testing.

There is no such thing as a best
practice.
• Change as Fast as the World

Changes Yesterday's wisdom
becomes today's obstacle and
tomorrow's folly.

• Pay Attention to the Small Stuff
Reliable performance comes
when noise is not tolerated, when
small failures are deeply
investigated and corrected.

• Use the Scientific Method
Establish a hypothesis, conduct
many rapid experiments, create
concise documentation, and
implement the best alternative.
Then choose another problem
and do it again.

Decide as late as possible; Learn first

As SW development is always associated
with uncertainty, better results should be
achieved with an options-based
approach, delaying decisions until they
can be made based on facts and not on
assumptions and predictions.
An agile approach can move the options
earlier for customers, thus delaying
certain crucial decisions until customers
have realized their needs better.
This also allows later adaptation to
changes and the prevention of costly
earlier technology-bounded decisions.
This does not mean that no planning
should be involved – on the contrary,
planning activities should be
concentrated on the different options
and adapting to the current situation.

Planning is useful. Learning is essential.

• The Predictability Paradox
Predictable organizations do not
guess about the future and call it a
plan; they develop the capacity to
learn quickly and rapidly respond to
the future as it unfolds.

• Integrating Events
Knowledge-based development seeks
out knowledge gaps, develops
multiple options for solutions, and
frequently synchronizes all teams
developing the system.

• The Last Responsible Moment
Don't make expensive-to-change
decisions before their time – and
don't make them after their time!

Deliver as fast as possible
In the era of rapid technology evolution, it is
not the biggest that survives, but the fastest.

The sooner the product is delivered without
major defects, the sooner feedback is
received, and incorporated into the next
iteration.

The shorter the iterations, the better the
learning and communication within the team.

The just-in-time production ideology could be
applied to software development, recognizing
its specific requirements and environment.

This is achieved by presenting the needed
result and letting the team organize itself and
divide the tasks for accomplishing the needed
result for a specific iteration.

At the beginning, the customer provides the
needed input.

Create a steady, even flow of work,
pulled from a deep understanding of
value.
Speed, Quality & Low Cost are Fully
Compatible
Companies that compete on the basis of
speed have a big cost advantage, deliver
superior quality, and are more attuned to
their customers' needs.
Focus on Flow Efficiency, not Resource
Efficiency
Resource efficiency interferes with the
smooth flow of value; it often delivers
half the value for twice the effort.
Manage Workflow rather than Task-
based Schedules
The best way to establish reliable,
predictable deliveries is to establish
reliable, repeatable workflows.

Empower the team; Energize workers
Traditionally the managers tell the workers
how to do their own job. In a "Work-Out
technique“¨ managers are taught how to
listen to the developers, so they can explain
better what actions might be taken, as well
as provide suggestions for improvements.

The lean approach: "find good people and
let them do their own job," encouraging
progress, catching errors, and removing
impediments, but not micro-managing.

Another mistaken belief has been the
consideration of people as resources.
People might be resources from the point
of view of a statistical data sheet, but in
software development

The developers should be given access to
the customer; the team leader should
provide support and help in difficult
situations, as well as ensure that skepticism
does not ruin the teams spirit.

The time and energy of bright,
creative people are the scarce
resources in today's economy.
• Purpose

A meaningful purpose inspires
and energizes workers.

• Challenge
Provide challenge, feedback,
and an environment that
enables everyone to become
excellent.

• Responsibility
The most productive groups
are semi-autonomous teams –
with an internal leader – that
accept end-to-end
responsibility for meaningful
accomplishments.

Build integrity in; build quality in
The customer needs to have an overall
experience of the System – this is the so-
called perceived integrity: how it is being
advertised, delivered, deployed, accessed,
how intuitive its use is, price and how well
it solves problems.

Conceptual integrity means that the
system’s separate components work well
together as a whole with balance between
flexibility, maintainability, efficiency, and
responsiveness.

• Should be understood as whole

• Information is received in pieces

One of the healthy ways towards integral
architecture is refactoring.

Automated tests are also considered part of
the production process, and therefore if
they do not add value they should be
considered waste.

Find and fix defects the moment
they occur.
Mistake-Proof the Process
Think of tests as specifications.
Use them to establish confidence
in the correctness of the system
at any time during development,
at every level of the system.
Integrate Early and Often
Every development process ever
invented had as its primary
purpose to find and fix defects as
early in the development process
as possible.
Don't Tolerate Defects
If you expect to find defects
during final verification, your
development process is defective.

See the whole; focus on customers

Software systems are not simply the
sum of their parts, but also the product
of their interactions.

Defects in software tend to accumulate
during the development process – by
decomposing the big tasks into smaller
tasks, and by standardizing different
stages of development, the root causes
of defects should be found and
eliminated.

The larger the system, the more
organizations that are involved in its
development and the more parts are
developed by different teams, the
greater the importance of having well
defined relationships between
different vendors.

"If you organize around the consumer,
the rest of it will follow." – Eric Schmidt

Ask the Right Questions
Innovation begins with a fresh
perspective, a keen insight, a
penetrating question.

Solve the Right Problems
Do not focus on the products you are
building, focus on the problems
customers are encountering.

Design a Great Experience
It is not enough for customers to be
satisfied, they should love your
products.

KANBAN

Kanban
(wikipedia based on David Anderson. Kanban – Successful Evolutionary

change for your Technology Business. Blue Hole Press, April 2010)

Visualise
• Visualising the flow of work and making it visible is core to understanding

how work proceeds. Without understanding the workflow, making the
right changes is harder.

• A common way to visualise the workflow is to use a card wall with cards
and columns. The columns on the card wall representing the different
states or steps in the workflow.

Limit WIP
• Limiting work-in-process implies that a pull system is implemented on

parts or all of the workflow.
• The critical elements are that work-in-process at each state in the

workflow is limited and that new work is “pulled” when there is available
capacity within the local WIP limit.

Manage flow
• The flow of work through each state in the workflow should be monitored,

measured and reported. By actively managing the flow the continuous,
incremental and evolutionary changes to the system can be evaluated to
have positive or negative effects on the system.

Kanban
Make policies explicit
• Until the mechanism of a process is made explicit it is often hard or

impossible to hold a discussion about improving it.
Implement feedback loops
• Collaboration to review flow of work and demand versus capability

measures, metrics and indicators coupled with anecdotal narrative
explaining notable events is vital to enabling evolutionary change.

Improve collaboratively, evolve experimentally (using models and the
scientific method)
• The Kanban method encourages small continuous, incremental and

evolutionary changes that stick.
• When teams have a shared understanding of theories about work,

workflow, process, and risk, they are more likely to be able to build a
shared comprehension of a problem and suggest improvement actions
which can be agreed by consensus.

• The Kanban method suggests that a scientific approach is used to
implement continuous, incremental and evolutionary changes. The
method does not prescribe a specific scientific method to use.

Kanban board
(http://en.wikipedia.org/wiki/File:Simple-kanban-board-.jpg)

Example of tool support
http://kanbantool.com/

http://commons.wikimedia.org/wiki/File:Kanban_board_example.jpg

Motivation behind Kanban
(http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf based on

(http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum)

• Controlling the rate of transition. First-generation methods often
require traumatic change to the people and structures in the
organization.

• Allocating specialized skill sets, domain knowledge, or knowledge
of legacy code effectively across the organization. Dedicated and
relatively static teams, while desirable, are usually not practical in
this regard.

• Enabling participation of management and leadership. Scrum
often marginalizes management.

• Providing teams with guiding principles, especially the principles
of lean and the theory of constraints.

• Providing a better way to learn how to improve. End-of-iteration
retrospectives are too narrow and too late to be valuable over the
long haul.

• Enabling teams to work on the right-sized chunks. With time-
boxing, work gets squeezed into a predefined period and unrelated
bits of work get grouped into one sprint.

http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf

http://www.netobjectives.com/blogs/real-
differences-between-kanban-and-scrum

(one opinion!)

Kanban Scrum

Explicit policies Yes Don't believe it possible

Manage Work in Progress
(WIP)

Yes
Not mentioned, don't know
how to do it without explicit
policies

Visibility of process Input, work, output
Input and output only. Work
is black-box

Management Inclusive Keep them at bay

Value stream
Includes product
management across
products

At team level for one
product

Change management Controllable
Must change to Scrum
model – even if disruptive

http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum

It is also a cultural issue
(source Cutter IT Journal)

It is also a cultural issue
(source Cutter IT Journal)

“Note that the adoption
is wider and that the more
conservative cultures have

adopted it fairly rapidly.
We attribute this difference

specifically to the evolutionary,
incremental nature of Kanban. It is

more appealing in conservative cultures
than the revolutionary approach required

by some agile methods.”

LEAN STARTUP

Lean startup

• Based on

– work by Eric Ries, e.g. presentation ” The Lean
Startup Doing More With Less”

– Presentations of
Pekka Abrahamsson

Understanding Failure

• Not because the technology doesn’t work

• No customers or a sustainable business model

• With better management, idea failure doesn’t
have to lead to company failure

Agile Product Development
Unit of Progress: A line of Working Code

Problem: known

Solution: unknown

“Product Owner” or in-house customer

Product Development at Lean Startup
Unit of Progress: Validated Learning About Customers ($$$)

Problem: unknown

Solution: unknown

Customer Development

Hypotheses,

Experiments,

Insights

Data,

Feedback,

Insights

The Startup OODA Loop

LEARN BUILD

MEASURE

IDEAS

PRODUCT
DATA

Minimize TOTAL time through the loop

DATA

IDEAS

There’s much more…

IDEAS

PRODUCT DATA

BUILD LEARN

MEASURE

Code Faster

Unit Tests
Usability Tests

Continuous Integration
Incremental Deployment

Free & Open-Source Components
Cloud Computing

Cluster Immune System
Just-in-time Scalability

Refactoring
Developer Sandbox

Minimum Viable Product

Measure Faster
Split Tests
Clear Product Owner
Continuous Deployment
Usability Tests
Real-time Monitoring
Customer Liaison

Learn Faster

Split Tests
Customer Interviews
Customer Development
Five Whys Root Cause Analysis
Customer Advisory Board
Falsifiable Hypotheses
Product Owner Accountability
Customer Archetypes
Cross-functional Teams
Semi-autonomous Teams
Smoke Tests

Funnel Analysis
Cohort Analysis

Net Promoter Score
Search Engine Marketing

Real-Time Alerting
Predictive Monitoring

Key elements and terms of Lean Startup
• A minimum viable product (MVP) is the version of a new product

which allows a team to collect the maximum amount of validated
learning about customers with the least effort.

• Continuous deployment is a process whereby all code that is
written for an application is immediately deployed into production.

• A split or A/B test is an experiment in which "different versions of a
product are offered to customers at the same time.

• Actionable metrics can lead to informed business decisions and
subsequent action. These are in contrast to 'vanity metrics' -
measurements that give “the rosiest picture possible” but do not
accurately reflect the key drivers of a business.

• A pivot is a structured course correction designed to test a new
fundamental hypothesis about the product, strategy, and engine of
growth.

