
Lecture 9
Dependability; safety-critical

systems

Kari Systä

17.3.2014

17.3.2014 TIE-21100/21101; K.Systä 1

17.3.2014 TIE-21100/21101; K.Systä 2

Week Lecture Exercise

10.3 Quality in general;

Quality management systems

Patterns

17.3 Dependable and safety-critical systems ISO9001

24.3 Work planning; effort estimation Code inspections

31.3 Version and configuration management Effort estimation

7.4 Role of software architecture; product

families; software evolution

 ?

14.4 Specifics of some domains, e.g. web

system and/or embedded and real time

systems

Break?

21.4 Easter Break?

28.4 Software business, software start-ups ?

5.5 Last lecture; summary; recap for exam ?

Safety-critical and dependable systems

Learning goals

• Understand role of software in critical systems

• Basic understanding of issues and methods

• Sommerville chapters 11-13

17.3.2014 TIE-21100/21101; K.Systä 3

Introduction: Therac-25 incident
• This is very famous case. See for instance:

http://courses.cs.vt.edu/professionalism/Ther
ac_25/Therac_1.html

• Therac was a radiation therapy device with
two modes:
1. High energy to be used through HW filters

2. Lower energy without thise devices

• Earlier models had HW projection tp preven
using of high energy without HW protection

• In the new model, the protection was done in
Software

17.3.2014 TIE-21100/21101; K.Systä 4

http://courses.cs.vt.edu/professionalism/Therac_25/Therac_1.html
http://courses.cs.vt.edu/professionalism/Therac_25/Therac_1.html

A safety analysis was made during design

The assumptions:

(1) Programming errors have been reduced by extensive
testing on a hardware simulator and under field
conditions on teletherapy units. Any residual software
errors are not included in the analysis.

(2) Program software does not degrade due to wear,
fatigue, or reproduction process.

(3) Computer execution errors are caused by faulty
hardware components and by "soft" (random) errors
induced by alpha particles and electromagnetic noise.

17.3.2014 TIE-21100/21101; K.Systä 5

But

• The system gave overdoses because high
energy was sent without filters

• There were several problems, also in the user
interface and programming errors like:

– a one-byte counter in a testing routine frequently
overflowed; if an operator provided manual input
to the machine at the precise moment that this
counter overflowed, the interlock would fail

17.3.2014 TIE-21100/21101; K.Systä 6

Analysis said later

Basic software-engineering principles that apparently
were violated with the Therac-25 include:
• Documentation should not be an afterthought.
• Software quality assurance practices and standards

should be established.
• Designs should be kept simple.
• Ways to get information about errors -- for example,

software audit trails -- should be designed into the
software from the beginning.

• The software should be subjected to extensive testing
and formal analysis at the module and software level;
system testing alone is not adequate.

17.3.2014 TIE-21100/21101; K.Systä 7

Now think of all SW you depend on!

Digital fly-by-wire technologies of
airplanes.

Digital phone network
• You should always be able to call 112

ABS break systems of cars

Pacemakers (luckily I do not need)

17.3.2014 TIE-21100/21101; K.Systä 8

Some terms

• Critical software/system

• Dependable software/system

• Safety-critical software

17.3.2014 TIE-21100/21101; K.Systä 9

Sources of problems

• Hardware failure
– Hardware fails because of design and

manufacturing errors or because components
have reached the end of their natural life.

• Software failure
– Software fails due to errors in its specification,

design or implementation.

• Operational failure
– Human operators make mistakes. Now perhaps

the largest single cause of system failures

17.3.2014 TIE-21100/21101; K.Systä 10

Dependability
(Sommeville Fig 11.1)

Dependability

Availability Reliability Safety Security

Availability of the
system to deliver
services when
needed.

The ability of the
system to deliver
services as specified

The ability of the
system to operate
without
catastrophic failure.

The ability of the
system to protect
it self against
accidental or
deliberate
intrusion

17.3.2014 TIE-21100/21101; K.Systä 11

Other dependability properties

• Reparability
– Reflects the extent to which the system can be repaired in the event of

a failure

• Maintainability
– Reflects the extent to which the system can be adapted to new

requirements;

• Survivability
– Reflects the extent to which the system can deliver services whilst

under hostile attack;

• Error tolerance
– Reflects the extent to which user input errors can be avoided and

tolerated.

17.3.2014 TIE-21100/21101; K.Systä 12

In the course of distributed system we
have used

• Availability

• Reliability

• Safety

• Maitainability

• Fault tolerance

17.3.2014 TIE-21100/21101; K.Systä 13

• Dependability costs tend to increase exponentially as
increasing levels of dependability are required.

• There are two reasons for this

– The use of more expensive
development techniques and
hardware that are required to
achieve the higher levels of
dependability.

– The increased testing and system
validation that is required to
convince the system client and
regulators that the required levels
of dependability have been
achieved.

Cost

Dependability

17.3.2014 TIE-21100/21101; K.Systä 14

About availability

• Usually on percentage

– For example 99.95% means that system is down
0.05% of the time

• Means about 4 hours and 20 minutes per year

• However, we also need to consider

– Number of users affected

– Length of single break

– … criticality of the system

17.3.2014 TIE-21100/21101; K.Systä 15

About reliability
(Sommerville Figure 11.3)

17.3.2014 TIE-21100/21101; K.Systä 16

Some faults are more relevant than others

• I study at IBM showed that removing of 60% of
known bugs increased reliability only by 3%
– Many of the faults are likely to cause failures only

after using the system for thousands of months

– Some faults never lead to failures

• Users adapt their behavior to avoid system
features that may fail for them.

• A program with known faults may therefore still
be perceived as reliable by its users.

17.3.2014 TIE-21100/21101; K.Systä 17

Techniques for failure prevention

• Fault avoidance
– Development technique are used that either minimise the possibility

of mistakes or trap mistakes before they result in the introduction of
system faults.

• Fault detection and removal
– Verification and validation techniques that increase the probability of

detecting and correcting errors before the system goes into service are
used.

• Fault tolerance
– Run-time techniques are used to ensure that system faults do not

result in system errors and/or that system errors do not lead to system
failures.

17.3.2014 TIE-21100/21101; K.Systä 18

Physical redundancy
(Example ”Triple modular redundancy”)

17.3.2014 TIE-21100/21101; K.Systä 19

A B C

A1

A2

A3

B1

B2

B3

C1

C2

C3

V1

V2

V3

V4

V5

V6

V7

V8

V9

Redundant information

• Error detection
– Parity bit is the simplest and most known

– cyclic-redundancy check)

– Hash

• error correction
– More check data

– ”Hamming code”

17.3.2014 TIE-21100/21101; K.Systä 20

Check

But how to use redundancy in SW?

C++

Java

17.3.2014 TIE-21100/21101; K.Systä 21

Safety

• “system’s ability to operate, normally or
abnormally, without danger of causing human
injury or death and without damage to the
system’s environment.

• Important as most devices whose failure is
critical now incorporate software-based
control systems.

– Transport

– Medical

17.3.2014 TIE-21100/21101; K.Systä 22

Categories in Sommerville

• Primary safety-critical systems

– Embedded software systems whose failure can cause the
associated hardware to fail and directly threaten people.
Example is the insulin pump control system.

• Secondary safety-critical systems
– Systems whose failure results in faults in other (socio-

technical)systems, which can then have safety consequences. For
example, a patient management system in hospital is safety-critical as
failure may lead to inappropriate treatment being prescribed.

17.3.2014 TIE-21100/21101; K.Systä 23

17.3.2014 TIE-21100/21101; K.Systä 24

Safety terminology
(Sommerville Figure 11.6)

17.3.2014 TIE-21100/21101; K.Systä 25

Safety and reliability

• Safety and reliability are related but distinct
– In general, reliability and availability are necessary

but not sufficient conditions for system safety

• Reliability is concerned with conformance to a
given specification and delivery of service

• Safety is concerned with ensuring system
cannot cause damage irrespective of whether
or not it conforms to its specification

17.3.2014 TIE-21100/21101; K.Systä 26

Software engineering for safety and
high reliability

• Requirements engineering

• Risk-analysis

• Dependable programming

• Testing and validation

• Formal methods

• Software process concerns

17.3.2014 TIE-21100/21101; K.Systä 27

Requirements engineering for
dependable systems

• In general, requirements work is especially
important for dependable systems

• Dependability adds new requirements:
– Functional requirements to define error checking and

recovery facilities and protection against system
failures.

– Non-functional requirements defining the required
reliability and availability of the system.

– Excluding requirements that define states and
conditions that must not arise.

 17.3.2014 TIE-21100/21101; K.Systä 28

Software engineering for safety and
high reliability

• Requirements engineering

• Risk-analysis

• Dependable programming

• Testing and validation

• Formal methods

• Software process concerns

17.3.2014 TIE-21100/21101; K.Systä 29

Risk analysis in an important part of
development of critical systems

• Bring ”what all can go wrong”-attitude to
development

• Very common and recommended practice

• Compulsory task in many regulated domains

• Drives specification, implementation and
testing

– and also planning

17.3.2014 TIE-21100/21101; K.Systä 30

Risk analysis
(Figure 12.1 in Sommerville)

Risk
Identification

Risk
Analysis

Risk De-
composition

Risk
Reduction

Risk
Description

Dependability
Requirements

Root Cause
Analysis

Risk
Assessment

Risk identification = Hazard identification
Risk analysis = Hazard assessment
Risk decomposition = Hazard analysis
Risk reduction = safety requirements specification

17.3.2014 TIE-21100/21101; K.Systä 31

Different hazards

Physical hazards

Electrical hazards

Biological hazards

Service failure hazards

User/operation hazards

Etc.

17.3.2014 TIE-21100/21101; K.Systä 32

Example (insulin pump)

• Insulin overdose (service failure).

• Insulin underdose (service failure).

• Power failure due to exhausted battery (electrical).

• Electrical interference with other medical equipment (electrical).

• Poor sensor and actuator contact (physical).

• Parts of machine break off in body (physical).

• Infection caused by introduction of machine (biological).

• Allergic reaction to materials or insulin (biological).

17.3.2014 TIE-21100/21101; K.Systä 33

Risk triangle

Acceptable
region

Risk tolerated only if
risk reduction is
impractical excessively
expensive

Unacceptable region.
Risk cannot be tolerated

ALARP
region

Negligible region

As low as reasonable practical

17.3.2014 TIE-21100/21101; K.Systä 34

Example of fault tree

17.3.2014 TIE-21100/21101; K.Systä 35

Software engineering for safety and
high reliability

• Requirements engineering

• Risk-analysis

• Dependable programming

• Testing and validation

• Formal methods

• Software process concerns

17.3.2014 TIE-21100/21101; K.Systä 36

Guidelines for dependable programming

• Limit visibility

• Check all inputs (and return values)

• Provide handler for all exceptions

• Minimize use of error-prone constructs

• Provide restart capabilities

• Check array bounds

• Use timeouts when calling external components

• Name all constants that represent real-world
values

17.3.2014 TIE-21100/21101; K.Systä 37

Software engineering for safety and
high reliability

• Requirements engineering

• Risk-analysis

• Dependable programming

• Testing and validation

• Formal methods

• Software process concerns

17.3.2014 TIE-21100/21101; K.Systä 38

Testing and validation

• Test a lot … and more

• Plan test carefully

• Document test plan and results

• Measure test coverage

• Many test cases should come from risk analysis

17.3.2014 TIE-21100/21101; K.Systä 39

Software engineering for safety and
high reliability

• Requirements engineering

• Risk-analysis

• Dependable programming

• Testing and validation

• Formal methods

• Software process concerns

17.3.2014 TIE-21100/21101; K.Systä 40

Formal methods

• Mathematic- based techniques for the specification,
development and verification of software and hardware
systems.

• Formal specification
– Precise, unambiguous, …

• Specification analysis and proof
– Consistency, missing of errors

• Transformational development
– From correct specification to correct programs

• Program verification.

17.3.2014 TIE-21100/21101; K.Systä 41

Acceptance problems according to
Sommerville

• Problem owners cannot understand a formal
specification and so cannot assess if it is an accurate
representation of their requirements.

• It is easy to assess the costs of developing a formal
specification but harder to assess the benefits. Managers
may therefore be unwilling to invest in formal methods.

• Software engineers are unfamiliar with this approach
and are therefore reluctant to propose the use of FM.

• Formal methods are still hard to scale up to large
systems.

• Formal specification is not really compatible with agile
development methods.

17.3.2014 TIE-21100/21101; K.Systä 42

Software engineering for safety and
high reliability

• Requirements engineering

• Risk-analysis

• Dependable programming

• Testing and validation

• Formal methods

• Software process concerns

17.3.2014 TIE-21100/21101; K.Systä 43

Notes on software engineering
processes and safety-critical software

• If is often claimed that waterfall suites better to
safety-critical systems than agile
– Partly true, but there are successful adaptations of

agile methods to safety critical systems

– For example role of documentation is bigger in safety-
critical systems

• Risk-analysis need to critical part of the process

• More discipline is needed

• Need to provide evidence for auditing and
certification

17.3.2014 TIE-21100/21101; K.Systä 44

Example: medical devices

• Standards:
– IEC 60601-1-4 (Safety of medical equipment)

– ISO 14971 (Risk management)

– IEC 62304 (SW life cycle)

– IEC 62366 (Medical devices).

– IEC 82304 (Healthcare SW systems) – work in progress

• 62304 defines three classes of systems:
– A: No injury or damage to health is possible

– B: Non-serious injury is possible

– C: Death or serious injury is possible

17.3.2014 TIE-21100/21101; K.Systä 45

Additional issues

• While medical systems rely on ISO 60601
other areas are based on
IEC 61508

– 26262 (Automotive), 62279(Rail), 61511 (Process
industries), 62513 (Nuclear), 62061 (Machinery),
…

• Many practices are HW based and talk about
probabilities, ”mean time between failure”,

– This concepts are hard to apply to SW

17.3.2014 TIE-21100/21101; K.Systä 46

An example

• London Ambulance Dispatching system

• Around 1992

• System was tried, but users returned to
manual systems

• Managers required to resign

17.3.2014 TIE-21100/21101; K.Systä 47

Analysis discovered some causes

• Poor system design - Was designed for perfect world

– Technologies always work, people do what they are
told to do, and unexpected never happens

• Management problems

– Changes, efforts to organize for higher productivity

– ”Fear of failure” culture

• Procurement process

• Timetable

• Inadequate testing and A&A

• Inadequate project management

17.3.2014 TIE-21100/21101; K.Systä 48

Safety-critical and dependable systems

Learning goals

• Understand role of software in critical systems

• Basic understanding of issues and methods

• Sommerville chapters 11-13

17.3.2014 TIE-21100/21101; K.Systä 49

17.3.2014 TIE-21100/21101; K.Systä 50

Week Lecture Exercise

10.3 Quality in general;

Quality management systems

Patterns

17.3 Dependable and safety-critical systems ISO9001

24.3 Work planning; effort estimation Code inspections

31.3 Version and configuration management Effort estimation

7.4 Role of software architecture; product

families; software evolution

 ?

14.4 Specifics of some domains, e.g. web

system and/or embedded and real time

systems

Break?

21.4 Easter Break?

28.4 Software business, software start-ups ?

5.5 Last lecture; summary; recap for exam ?

