
Lecture 13

Software business,

Software startus

14.4.2014

14.4.2014 1 TIE-21100/21106; K.Systä

14.4.2014 TIE-21100/21106; K.Systä 2

Week Lecture Exercise

10.3 Quality in general;

Quality management systems

Patterns

17.3 Dependable and safety-critical systems ISO9001

24.3 Work planning; effort estimation Code inspections

31.3 Version and configuration management Effort estimation

7.4 Role of software architecture software

evolution

14.4 Software business, software start-ups,

IPR

Break

21.4 Easter Break

28.4 Specifics of some domains, e.g. web

system and/or embedded and real time

systems

 ?

5.5 Last lecture; summary; recap for exam ?

15.5 EXAM 9-12

Content of the lecture

• Regap of last weeks lecture

• Business aspects of software

– Those who attended basic course fall 2013 might
find some slides familiar

• Software Startups

– Output from recent seminar

14.4.2014 TIE-21100/21106; K.Systä 3

Definition
(http://csse.usc.edu/csse/TECHRPTS/1995/usccse95-500/usccse95-500.pdf)

A software system architecture comprises

• A collection of software and system

components, connections, and constraints.

• A collection of system stakeholders-need

statements.

(a collection of system requirements)

• a rationale which demonstrates that the

components, connections, and constraints

define a system that, if implemented, would

satisfy the collection of system requirements

14.4.2014 TIE-21100/21106; K.Systä 4

Two (three) levels

• Architecture in the small is concerned with the architecture of

individual programs. At this level, we are concerned with the

way that an individual program is decomposed into components.

• Architecture in the large is concerned with the architecture of

complex enterprise systems that include other systems,

programs, and program components. These enterprise systems

are distributed over different computers, which may be owned

and managed by different companies.

• Enterprise architecture Enterprise architecture is the organizing

logic for business processes and IT infrastructure reflecting the

integration and standardization requirements of the company's

operating model. The operating model is the desired state of

business process integration and business process

standardization for delivering goods and services to customers.[

14.4.2014 TIE-21100/21106; K.Systä 5

S
o

m
m

e
rv

ill
e

4 + 1 view model of software architecture

 A logical view, which shows the key abstractions in the system as

objects or object classes.

 A process view, which shows how, at run-time, the system is

composed of interacting processes.

 A development view, which shows how the software is decomposed

for development.

 Haikala&Mikkonen: toteutusnäkymä; implementation view

 A physical view, which shows the system hardware and how

software components are distributed across the processors in the

system.

 Haikala&Mikkonen: sijoittelunäkymä (deployment view)

 Related using use cases or scenarios (+1)

 6 TIE-21100/21106; K.Systä 14.4.2014

Stakeholder concerns
http://www.codingthearchitecture.com/pages/book/role.html

Stakeholder Concern

Customer • Schedule and budget estimation

• Feasibility and risk assessment

• Requirements traceability

• Progress tracking

User • Consistency with requirements and usage scenarios

• Future requirement growth accommodation

• Performance, reliability, interoperability, etc.

Architect • Requirements traceability

• Support of tradeoff analyses

• Completeness, consistency of architecture

Developer • Sufficient detail for design

• Reference for selecting / assembling components

• Maintain interoperability with existing systems

Maintainer • Guidance on software modification

• Guidance on architecture evolution

• Maintain interoperability with existing systems

14.4.2014 TIE-21100/21106; K.Systä 7

Conway’s law

• organizations which design systems ... are constrained to

produce designs which are copies of the communication

structures of these organizations

• Conway, Melvin E. (April 1968), "How do Committees Invent?",

Datamation 14 (5): 28–31,

– Reprint available:

http://www.melconway.com/research/committees.html

14.4.2014 TIE-21100/21106; K.Systä 8

http://www.melconway.com/research/committees.html
http://en.wikipedia.org/wiki/Datamation

SOFTWARE BUSINESS

14.4.2014 TIE-21100/21106; K.Systä 9

Background

• The local job-market has changed during last years

• In the past most students were hired by big

companies and ”business” was a concern of

”somebody else”

• Today small companies do most of the hiring

• In small companies everybody need understand

something about the business

• Many of you should create a start-up company

• Latest trend in software engineering research have

approached business

14.4.2014 TIE-21100/21106; K.Systä 10

Learning outcomes

• Student understands the basic principles of software business

and the special characteristics of software industry. He/she can

critically analyze and develop software business models.

Student can apply theoretical knowledge and understanding of

the software business characteristics to create a solid business

plan for a software start-up.

14.4.2014 TIE-21100/21106; K.Systä 11

TLO-35246 Software Business, 4 cr

14.4.2014 TIE-21100/21106; K.Systä 12

Core content
Complementary

knowledge

Specialist

knowledge

1. Software industry Historical development

and status of the industry.

Value networks in the

industry.

2. Software business

models

SaaS models.

3. Management and

leadership in software

business

Leading professionals in

software business.

Productization and

marketing.

4. Business plan for a

software intensive

company

Software start ups. Financing, IPR's.

TLO-35246 Software Business, 4 cr

A rough categorization

• Software as part of the product

– Value of software is increasing

• Simple sub-contracting of software resources

• Development of custom software as a project

• ”Shrink-wrapped” software

– Although the delivery channel is changing

• Software as a service (SaaS)

• How about open source?

14.4.2014 TIE-21100/21106; K.Systä 13

Example SaaS: Adobe Creative Cloud
(http://www.paulpehrson.com/2011/04/11/adobes-new-software-as-a-

service-model/)

14.4.2014 TIE-21100/21106; K.Systä 14

Product Full Upgrade* SAAS**

Months to

justify initial

investment***

Design

Premium
$1899 $399 $95 20

Web

Premium
$1799 $399 $89 20

Production

Premium
$1699 $399 $85 20

Master

Collection
$2599 $549 $129 20

Photoshop $699 $199 $35 20

Illustrator $599 $199 $29 20

CHALLENGE NUMBER 1:

BUDGETING

14.4.2014 TIE-21100/21106; K.Systä 15

Hypothetical example

• Software developer company with 10 employees

• Sells programing work by charging developer hours

• Full-time manager, no assisting work force

• Other employees do invoiced work 75% of their worktime

• Rotation-rate about 1 person / year

• Salaries with compulsory indirect costs

1.6 * 3 k€ * 12 month = ~58k€

• Add office, equipment, etc, by multiplying with 1.5

 => ~86k€

• 10 persons => costs of the company are ~860k€/year

TIE-21100/21106; K.Systä 16 14.4.2014

… continues

• 9 people create the income.

• Due to rotation, sick leaves etc we use factor 8:

• 8*1700*0.75 = about 10000 hours to be charged.

• Because we need to cover 860k€/year a hour will

cost about ~86€ and price of a day is 650€.

• One person year costs ~150k€

• Note: does not include any profit

(Nobody gets a Ferrari)

14.4.2014 TIE-21100/21106; K.Systä 17

Remember the iron triangle

Time/

Schedule
Resources

Scope/features

14.4.2014 TIE-21100/21106; K.Systä 18

Quality

The ”Competition”

Vendor

• As little as possible

• As expensive as

possible

Maintenance

• As a new project

New features

• Buy us

Customer

• As much as possible

• As cheap as possible

Maintenance

• Belongs to warranty

New features

• By anybody

14.4.2014 TIE-21100/21106; K.Systä 19

CHALLENGE 2

FROM CUSTOM TO PRODUCT

14.4.2014 TIE-21100/21106; K.Systä 20

Step 0: Customer-specific project

14.4.2014 TIE-21100/21106; K.Systä 21

SPEC IMPL TEST DELIV.

Customer

Sales &

marketing

Agile

Adapted from Haikala&Mikkonen Fig 11.3

Step 1: Packetized project

14.4.2014 TIE-21100/21106; K.Systä 22

Customer

Sales &

marketing

SPEC IMPL TEST

Agile?

Adapted from Haikala&Mikkonen Fig 11.4

SPEC PACK TEST DELIV.

Agile

Version

N

Version

N+1

Step 2: Product process

14.4.2014 TIE-21100/21106; K.Systä 23

Customer

SPEC IMPL TEST

Agile?

Adapted from Haikala&Mikkonen Fig 11.5

Sales&

marketing
DELIVERY

Version

N

Version

N+1

Customer

Support

CHALLENGE 3
IPR PROTECTION, OPEN SOURCE

OR SOMETHING ELSE

14.4.2014 TIE-21100/21106; K.Systä 24

The software vendors need to protect

their business

• IPR protection

– Based on legislation

– Different countries have different laws

• License agreements

• Pricing

• The included software

• Conditions of use; constraints

• Duties, responsibilities, liability

14.4.2014 TIE-21100/21106; K.Systä 25

Three main types of IPR

• Patent

– Against common believe, SW can be

protected with patents

• Copyright

– Source code, user interface, API

• Trade secret

14.4.2014 TIE-21100/21106; K.Systä 26

World of software licenses

Open

Commerc.

BSD

GPL

LGPL

Per user

Floating

Per HW

”Rent”

Buy

Contract

CPU Mhz MB
SaaS

14.4.2014 TIE-21100/21106; K.Systä 27

Java as an example

14.4.2014 TIE-21100/21106; K.Systä 28

Virtual
machine

Hardware

Bytecode

Compiler

class

Progr. language

X = Integer.parseInt("1234");

Libraries
(APIs)

Software

Tools

Beware – Open vs. Free Software
• Free software (1983) is:

– A philosophy
– A social movement
– FSF, free software foundation
– Stallmanism

• Open source (1998) is:
– A business model
– A development methodology
– OSI, open source initiative
– Raymondism

• Both approaches share a common vision on access to source
code

• Free as in free speech, not as in free beer

Eric Raymond

Richard Stallman

14.4.2014 TIE-21100/21106; K.Systä 29

Elements of Open Source Software

• Open development methodology
– Constant and thorough peer reviews

– Transparency of development process

– Global distribution

• Open Source Software license
– Set of well-defined licenses whose terms define what and what not

can be done with the software

– Lot of incompatibilities; do not always mix with proprietary code

• Community
– Individuals, companies, and organizations are free to participate

– (Somewhat) shared mission often needed for driving the community
towards a common goal

14.4.2014 TIE-21100/21106; K.Systä 30

STARTUP SW DEVELOPMENT

14.4.2014 TIE-21100/21106; K.Systä 31

http://www.cs.tut.fi/tapahtumat/SoftwareStartupDay/

14.4.2014 TIE-21100/21106; K.Systä 32

http://www.cs.tut.fi/~elorantv/startup/information.html

14.4.2014 TIE-21100/21106; K.Systä 33

What is start-up
• A startup is a human institution designed to create a new

product or service under conditions of extreme uncertainty.
(Eric Ries 2011)

• Software startup: temporary organizations focused on the
creation of high-tech and innovative products, with little or no
operating history, aiming to grow by aggressively scaling their
business in highly scalable markets (Giardino & Paternoster
2012)

• Software startups are becoming more and more important
because

– information infrastructure enables new kinds of behavior

– new products & services based on this infrastructure can
be developed with little resources

 14.4.2014 TIE-21100/21106; K.Systä 34

Crucial questions for start-ups

• Do consumers recognize they have a problem you
are trying to solve?

– If there was a solution, would they buy it?

– Would they buy it from us?

– Can we build a solution to that problem?

• Typically, companies start with the last question…

• Manager: I just want this!

• Engineer: I am going to build this!

14.4.2014 TIE-21100/21106; K.Systä 35

More important questions

• Which customer opinions should we listen to, if
any?

• How should we prioritize across the many
features we could build?

• Which features are essential to the product’s
success and which are secondary?

• What can be changed safely, and what might
anger customers?

• What should we work on next?

14.4.2014 TIE-21100/21106; K.Systä 36

The Startup OODA Loop

LEARN BUILD

MEASURE

IDEAS

PRODUCT
DATA

Minimize TOTAL time through the loop

DATA

IDEAS

14.4.2014 TIE-21100/21106; K.Systä 37

There’s much more…

IDEAS

PRODUCT DATA

BUILD LEARN

MEASURE

Code Faster

Unit Tests
Usability Tests

Continuous Integration
Incremental Deployment

Free & Open-Source Components
Cloud Computing

Cluster Immune System
Just-in-time Scalability

Refactoring
Developer Sandbox

Minimum Viable Product

Measure Faster
Split Tests

Clear Product Owner
Continuous Deployment

Usability Tests
Real-time Monitoring

Customer Liaison

Learn Faster

Split Tests
Customer Interviews

Customer Development
Five Whys Root Cause Analysis

Customer Advisory Board
Falsifiable Hypotheses

Product Owner Accountability
Customer Archetypes

Cross-functional Teams
Semi-autonomous Teams

Smoke Tests

Funnel Analysis
Cohort Analysis

Net Promoter Score
Search Engine Marketing

Real-Time Alerting
Predictive Monitoring

14.4.2014 TIE-21100/21106; K.Systä 38

IMVU story
• Instant messaging application with customizable avatars (2004)

• A lot of free messaging services available

• First idea: provide the virtual world using existing messaging services

– Customers would be able to chat online using their IMVU avatars
without having to switch IM providers or learn a new user interface.
They wouldn't have to persuade their friends to switch, either.

• A first low quality product with the capability to integrate existing IM
networks was created

– Built in 6 months

• The product was launched, but nothing happened: no customers at all

• Quality etc improvements, but still few customers

• Something wrong, but what?

14.4.2014 TIE-21100/21106; K.Systä 39

http://www.inc.com/magazine/201110/eric-ries-
usability-testing-product-development.html

• Eventually, out of desperation, we began bringing people into our office
for in-person interviews and usability tests. Imagine a 17-year-old girl
sitting down with us at a computer. We say, "Try this new product; it's
IMVU." She chooses her avatar and says, "Oh, this is really fun." She's
customizing the avatar, deciding how it's going to look. Then we say, "All
right, it's time to download the instant messaging add-on," and she
responds, "What's that?"

• "Well, it's this thing that interoperates with the instant messaging client,"
we say. She has no idea what we're talking about. But because she's in the
room with us, we're able to talk her into doing it.

• Then we say, "OK, invite one of your friends to chat." And she says, "No
way!" We say, "Why not?" And she says, "Well, I don't know if this thing is
cool yet. You want me to risk inviting one of my friends? If it sucks, they're
going to think I suck, right?" And we say, "No, no, it's going to be so much
fun once you get the person in there; it's a social product." She looks at us,
her face filled with doubt; you can see that this is a deal breaker.

14.4.2014 TIE-21100/21106; K.Systä 40

• Experiments with customers revealed that they liked to
make avatars, but not socialize with messaging and
invite friends

• Team created a single-player mode: no better success

• New feature introduced: ChatNow. Allows to be
randomly matched with someone else pushing the
button at the same time

• Customers liked this. Adding such friends to existing
buddy lists?

• Assumption: customers can add such a friend to an
existing buddy list

• Reality: they don’t, and they don’t want to download a
whole new IM just for this

14.4.2014 TIE-21100/21106; K.Systä 41

• Then, maybe they would meet somebody they thought was cool. They'd
say, "Hey, that guy was neat; I want to add him to my buddy list. Where's
my buddy list?" And we'd say, "Oh, no, you don't want a new buddy list;
you want to use your regular AOL buddy list." You could see their eyes go
wide, and they'd say, "Are you kidding me? A stranger on my buddy list?"
To which we'd respond, "Yes; otherwise you'd have to download a whole
new IM program with a new buddy list." And they'd say, "Do you have any
idea how many IM programs I already run?"

• "No," we'd say. "One or two, maybe?" That's how many each of us used.
To which the teenager would say, "Duh! I run eight." It started to dawn on
us that our concept was flawed.

• Our early adopters didn't think that having to learn a new IM program was
a barrier. Even more surprising, our assumption that customers would
want to use IMVU primarily with their existing friends was also wrong.
They wanted to make new friends, an activity that 3-D avatars are
particularly well suited to facilitating. Bit by bit, customers tore apart our
seemingly brilliant initial strategy.

14.4.2014 TIE-21100/21106; K.Systä 42

http://www.inc.com/magazine/201110/eric-ries-
usability-testing-product-development.html

IMVU story
Lessons learnt

• Customers don’t want an IM add-on, but a stand-alone IM network service

• Having to learn a new IM program is not a barrier

• Customers want to use avatar-based IM also for making new friends

Afterthoughts

• Especially in a startup, it is unknown who is the customer and what the
customer considers valuable

• Strategic assumptions (integration approach) were wrong

• It would have been possible to learn the same things with less effort: work
on “possibly valuable” features mostly waste

New way of working

• Emphasis on experiments. E.g., new customers were split automatically to
two different websites, and it was observed which produces more buying
customers.

• Working hypothesis: Customers use IMVU for making new friends

• Experiments supported this hypothesis

• Customers start to increase
14.4.2014 TIE-21100/21106; K.Systä 43

IMVU today
(source wikipedia)

• IMVU, Inc. is an online social entertainment website
founded in 2004, in which members use 3D avatars to
meet new people, chat, create, and play games.

• IMVU has over 3 million active users and currently has
the largest virtual goods catalog of more than 6 million
items.

• The business is located in Mountain View, California
and currently has 120 full-time employees.

• It is also known as one of the leading practitioners of
the Lean Startup approach.

14.4.2014 TIE-21100/21106; K.Systä 44

SOME FINDINGS FROM THE
SEMINAR

14.4.2014 TIE-21100/21106; K.Systä 45

Patterns were discovered
• The study resulted in 69 pattern candidates. After

a screening process, 14 pattern candidates were
further elaborated using the pattern workshop method
into a more refined form.

• Examples
– Create the development culture before processes [#54]
– Keep customer communication simple and natural [#45]
– Don’t grow in personnel [#57]
– Flat Organization [#3]
– Unique value proposition [#38]
– Start with small and experienced team and expand as

needed [#64]
– Time process improvements right [#32]
– Develop only what is needed now [#27]

 14.4.2014 TIE-21100/21106; K.Systä 46

Develop only what is needed now [#27]

Context
• Startups often think of the extensibility of their products. It is clear from

the beginning that the fist versions will be extended later for certain
customers or to the general market. This is an essential issue in all
startup lifecycle phases.

Problem
• How to tackle the extensibility issue? How to find the best basic

approach to development that makes the extension and alterations as
easy as possible?

Solution
• For efficient extensibility, develop only for what you need soon: what this

customer requires, what the next release should include, what the current
user stories require.

• Don't generalize designs. Don't implement for the next project. Plan only
for what is known.

• This is very important for startups due to the lack of resources. Once the
directions for products stabilize, other strategies may gain value and that
applies to later stages of companies.

14.4.2014 TIE-21100/21106; K.Systä 47

Create the development culture before processes [#54]

Context
• Often, when a new company is formed, all the elements of organizational

activity are missing – there is only a core team of people and its
competences, a goal and some vague visions of how to proceed. Everything
else must be built.

Problem
• Quite soon the team must be capable of producing software systems

that provide good value to the first customers. That ability requires
many things and decisions must be made upon what to develop first?
Should processes be the first priority or something else?

Solution
• Consciously develop from the beginning a company culture that supports

what you want to be. (Note: Culture here means the values of the
company, company’s identity, assumptions, general ways of activity: what
we are, what is special about us, how we approach things, are we for
example more creative than systematic, or do we put preference to human
issues over technology etc.)

• For example, if your key success factor is flexibility, develop
competence, general professional skill, collaboration, quality culture and
not rigid processes

14.4.2014 TIE-21100/21106; K.Systä 48

14.4.2014 TIE-21100/21106; K.Systä 49

Week Lecture Exercise

10.3 Quality in general;

Quality management systems

Patterns

17.3 Dependable and safety-critical systems ISO9001

24.3 Work planning; effort estimation Code inspections

31.3 Version and configuration management Effort estimation

7.4 Role of software architecture software

evolution

 ?

14.4 Software business, software start-ups,

IPR

Break?

21.4 Easter Break?

28.4 Specifics of some domains, e.g. web

system and/or embedded and real time

systems

 ?

5.5 Last lecture; summary; recap for exam ?

15.5 EXAM 9-12

