
Lecture 10 

Effort and time estimation 

24.3.2014 

24.3.2014 

1 

TIE-21100/21106 



24.3.2014 TIE-21100/21106 2 

Week Lecture Exercise 

10.3 Quality in general; 

Quality management systems 

Patterns 

17.3 Dependable and safety-critical systems ISO9001 

24.3 Work planning; effort estimation Code inspections 

31.3 Version and configuration management Effort estimation 

7.4 Role of software architecture; product 

families; software evolution 

 ? 

14.4 Specifics of some domains, e.g. web 

system and/or embedded and real time 

systems 

Break? 

21.4 Easter Break? 

28.4 Software business, software start-ups  ? 

5.5 Last lecture; summary; recap for exam  ? 



Learning goals 

• The factors of time and effort 

• Estimation techniques 

– COCOMO II 

– FISMA 

• Division of work 

– Distributed work 

– Global SW Development 

 

24.3.2014 

3 

TIE-21100/21106 



Structure of the lecture 

• A few points about project planning 

 

• Effort estimation + budgeting 

 

• Distributed and global development 

24.3.2014 

4 

TIE-21100/21106 



Plan-driven vs Agile 

Plan driven 

• The order and timing of 

all events is planned in 

advance. 

• The plan is updated 

during the work. 

• Accuracy improves 

during the project. 

• It is very hard to 

estimate effort in the 

beginning 

 

Agile 

• Only major milestones (e.g. 

releases) planned in 

advance. 

• Content of each sprint is 

planned just before the sprint 

according to current 

customer requirements 

• In many Agile methods strict 

time-boxing drives the work 

• Mini effort estimation in the 

beginning of every sprint 

24.3.2014 

5 

TIE-21100/21106 



Remember the iron triangle 

Time/ 

Schedule 
Resources 

Scope/features 

24.3.2014 TIE-21100/21106 

6 

Quality 



24.3.2014 

7 

Estimates improve as the project progresses 
Picture 12.8 in Haikala&Mikkonen, 23.9 in Sommerville 

Prestudy 

Requirement 

specification 

Architecture 

design 
Detailed 

design 
Implementation 

Real 

value 

TIE-21100/21106 



24.3.2014 

8 

Plan-driven scheduling 

• Start with constraints. 

• Make work breakdown structure 

– Including dependencies 

• Estimate efforts for tasks (e.g. days) – best to take 

input from several people 

• Check availability of resources 

• Put to calendar 

– Who, when 

• Project planning tools help in mechanical work 

– The challenge is the ”guessing” in advance 

TIE-21100/21106 



24.3.2014 

9 

Examples of constraints 

• Software must in in operational use 01.01.2016 

• 3-man project 

• Can use at least Ahto and halt of Teemu’s time 

• New version of database software is not available 

earlier than May 2015. 

 

TIE-21100/21106 



The tools often use Gantt Charts 

(Source: http://orgmode.org) 

24.3.2014 TIE-21100/21106 

10 



24.3.2014 

11 

Availability and contribution 

(NOTE: assume detailed planning, but these things should 

always be remembered)  

 

• We need to know contribution of all members 

(typically assume 5 days a week) 

• Reduce vacations, training, responsibilities on other 

projects 

• Reserve time for surprising tasks 

• Reduce non-productive work (admin, meetings, travel) 

• The remaining “productive work” should be used in 

remaining planning 

Recall WIP and 

fast lane in Kanban 

TIE-21100/21106 



24.3.2014 

12 

Estimation of available effort 

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

1 2 3 4 5 6 7 8 9 10 11 12

Remaining

Holidays

Other proj.

Admin

TIE-21100/21106 



24.3.2014 

13 

Partitioning of the project 

 

 

 

 

 

 

 

 

 

 

 

 

People 

Impossible to partition 

Easy to partition 

What one programmer can do in a day,  

two programmers can also do in day. 

 

A man's got to know his limitations. -- Dirty Harry. 

 

TIE-21100/21106 



24.3.2014 

14 

Consequence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time is expensive! Cost 

Time 

Minimum 

cost 

Minimum 

time 

TIE-21100/21106 



But time is also money 

(From an imaginary example from a keynote by professor Jan Bosch) 

 

 

In company X 

• R&D is 10% of revenue, e.g. 100M€ for a 1B$ product  

• New product development cycle: 12 months 

 

• Alternative 1: improve efficiency of development with 10%  

=> 10 M€  reduction in development cost  

• Alternative 2: reduce development cycle with 10%  

=> 100M€ add to top line revenue 

     (product starts to sell 1.2 months earlier)  

24.3.2014 

15 

TIE-21100/21106 



Structure of the lecture 

• A few points about project planning 

– Effort, resources and time don’t have linear 

dependencies 

 

• Effort estimation + budgeting 

 

• Distributed and global development 

24.3.2014 

16 

TIE-21100/21106 



24.3.2014 

17 

Effort estimation 

• Necessary for planning: timetable and budget 

 

• Factors 

– Complexity of the software – often hard to know in 

advance 

– Productivity of the team 

• Skills 

• Experience 

• Spirit 

– Required quality 

– Timetable (recall previous slides) 

 

 
TIE-21100/21106 



24.3.2014 

18 

Why so difficult 

• Productivity of individuals vary (10-times is not rare) 

– And team dynamics make situation event more 

complex 

• The exact requirements are seldom known 

– Plan driven: customer changes mind => 

  plan is changed 

– Agile: replanning for each sprint 

• Required implementation effort for each requirement 

– Especially if nothing similar has been done earlier 

– Surprising technical problems often appear 

 

TIE-21100/21106 



…why so difficult 

• Too many unknowns 

• Wishful thinking 

• Too much self-confidence 

• People have their own agendas 

– For example sales want to win the deal 

(Too often the worst estimate wins!) 

• Too complex and big system under estimation 

 

• Lack of historical data 

24.3.2014 TIE-21100/21106 

19 



24.3.2014 

20 

Methods for effort estimation 

• Planning poker 

 

• Cocomo (constructive cost model) – will be described 

today 

• FPA (function point analysis) 

 

• Use your experience and historical data 

– Collect information for next projects 

 

TIE-21100/21106 



Planning poker - what 

• Often used in agile projects 

• Collects and combines understanding from 
several participant. 

– Developers are very involved 

• [K. Molokken-Ostvold, N.C. Haugen] 

– More accurate and less optimistic than 
mechanical methods to combine individual 
estimates 

– Competes with expert estimation 
 

24.3.2014 TIE-21100/21106 

21 



Planning poker - how 

• Participants get a deck of cards with numbers 

– Often Fibonacci series 0, 1, 2, 3, 5, 8, 13… 

• Somebody present the task to be estimated 

• Everybody shows a card that describes his or her 
opinion about the effort 

– The cards are shown synchronously 
(at the same time) 

• Those who are different from common opinion defend 
their view 

• As long as there are different opinions repeat 

24.3.2014 TIE-21100/21106 

22 



Cards for planning poker 

 

24.3.2014 TIE-21100/21106 

23 



General model 

24.3.2014 

24 

Size Productivity Environment 

Number on lines 

# of function points 

# of classes 

…. 

Skills 

Experience 

Motivation 

…. 

 

 

(# of lines / day) 

Technologies 

Timetable 

…. 

TIE-21100/21106 



Simple formula from Sommerville 

• A is a constant that represent local practices and type of the 

software 

• Size is size, e.g., in function point 

• B is in between 1 and 1.5 and reflects the fact that size do not 

affect linearly the effort 

• M is multiplier combining process, product and organizational 

aspects 

24.3.2014 

25 

𝑬𝒇𝒇𝒐𝒓𝒕 = 𝑨 × 𝑺𝒊𝒛𝒆𝑩 × 𝑴 

TIE-21100/21106 



24.3.2014 

26 

COCOMO 

• First version about n. 1980. 

• Our material is based on COCOMO-II 

• Input:  

– Size of the product (SLOC, source lines of code) 

– Scaling factors of the whole product 

– Cost drivers for different parts of the project, about properties of 

• Product 

• Development methods, tools etc 

• Developers 

• Project 

• Outcome 

– Effort 

– Calendar time 

• Four submodels: application composition, early design, reuse, and 
post-architecture 

 

 

TIE-21100/21106 



COCOMO submodels 

• Application composition 

– Can be used when SW is mainly composed from existing 

components with scripting-like approach 

 

• Early design 

– As the name says this approach is used when only draft 

design of the system exists 

– Based on 7 multipliers 

 

• Reuse 

– Used when reusable components are used 

 

• Post-architecture 

– After architecture design has finalized, a more accurate 

estimation can be done 

24.3.2014 TIE-21100/21106 

27 



24.3.2014 

28 

Effort, PM = person months 

Nominal effort 

 PMNS = A * SizeE * EM1 * EM2 … * EMn 

  

A = effort coefficient, that can be calibrated according to situation 

 Based on large data set Boehm proposes 2.94  

 Could be interpreted as months per KSLOC 

 

Size is KSLOC 

 EMi are cofficients (7 in early design and 17 in post design) 

  

E  is a scaling exponent between 1.1 and 1.24 – depending on novelty 

 E = 0.91 + 0.01 *( SF1 + SF2 + SF3 + SF4 + SF5) 

(E is in between 1.1 and 1.24 – depending on novelty  
 

TIE-21100/21106 

Note, Sommerville’s book uses ’B’ instead of ’E’ 



24.3.2014 

29 

Calendar time 

TDEVNS = C * (PMNS )
F 

 

 C calibration factor, some material gives 3.67, 

 Sommerville uses 3 

  

 F is a scaling exponent,  

F = D + 0.2 * 0.01 * SF1 * SF2 * SF3 * SF4 * SF5 

     = D + 0.2 * (E – 0.91) 

 

Where 

 D is a calibration term, some material propose 0.28, 

 Sommerville 0.33 
 

TIE-21100/21106 



24.3.2014 

30 

How to estimate with COMOMO? 

1. Estimate scaling factor  SFi (I=1..5) and calculate scaling 

exponent E. 

2. Split product to independent parts to be estimate.. 

3. Estimatem size of each part, considering reuse and automatic 

code generation 

4. Estimate cost factors EMi  and calculate nominal person months 

PMns 

5. Calculate development time TDEVNS. 

6. If one want to deliver in shorter time. Choose SCED value “low” 

or “very low”, when TDEV drops max 25%. Correspondingly PM 

increases due to bigger SCED-factor. 

TIE-21100/21106 



24.3.2014 

31 

Scaling factors SFi 

• Each factor estimated in 6 level scale: 

– very low, low, nominal, high, very high, extra high 

 

VL L N H VH EH

Precedentedness 6.20 4.96 3.72 2.48 1.24 0.00

Development Flexibility 5.07 4.05 3.04 2.03 1.01 0.00

Architecture/Risk Resolution 7.07 5.65 4.24 2.83 1.41 0.00

Team Cohesion 5.48 4.38 3.29 2.19 1.10 0.00

Process Maturity 7.80 6.24 4.68 3.12 1.56 0.00

From those:  
 E = 0.91 + 0.01 *( SF1 + SF2 + SF3 + SF4 + SF5)) 

 F = 0.28 + 0.2 * (E – 0.91) 

TIE-21100/21106 



https://files.ifi.uzh.ch/rerg/arvo/courses/seminar

_ws02/reports/Seminar_4.pdf 

24.3.2014 TIE-21100/21106 

32 



24.3.2014 TIE-21100/21106 

33 

Product VL L N H VH EH 

RELY Required Software Reliability 0,82 0,92 1,00 1,10 1,26   

DATA Database Size   0,90 1,00 1,14 1,28   

DOCU Documentation Match to Lifecycle Needs 0,81 0,91 1,00 1,11 1,23   

CPLX Product Complexity 0,73 0,87 1,00 1,17 1,34 1,74 

RUSE Required Reusability   0,95 1,00 1,07 1,15 1,24 

Platform     1,00       

TIME Execution Time Constraint     1,00 1,11 1,29 1,63 

STOR Main Storage Constraint     1,00 1,05 1,17 1,46 

PVOL Platform Volatility   0,87 1,00 1,15 1,30   

  Personnel     1,00       

ACAP Analyst Capability 1,42 1,19 1,00 0,85 0,71   

APEX Applications Experience 1,22 1,10 1,00 0,88 0,81   

PCAP Programmer Capability 1,34 1,15 1,00 0,88 0,76   

PLEX Platform Experience 1,19 1,09 1,00 0,91 0,85   

LTEX Language and Tool Experience 1,20 1,09 1,00 0,91 0,84   

PCON Personnel Continuity 1,29 1,12 1,00 0,90 0,81   

  Project     1,00       

TOOL Use of Software Tools 1,17 1,09 1,00 0,90 0,78   

SITE Multisite Development 1,22 1,09 1,00 0,93 0,86 0,80 

SCED Required Development Schedule 1,43 1,14 1,00 1,00 1,00   

Schedule Compression Percentage 0,75 0,85 1,00 1,30 1,60   

Factors EM – post design 



24.3.2014 

34 

Simple example 

• Compiler for a Pascal-language (Language from history books)  

– 50000 source code lines 

– Skillful develops 

– New HW platform 

• Assume normal scaling factors 

– E = 0.91 + 0.01 *(3.72+3.04+4.24+3.29+4.68)) = 1.1 

– F = 0.28 + 0.2 * (E – 0.91) = 0.32 

• Cost factor personnel&project-tekijät are VH, orther N 

– PMns= 2.94 * 501.1 * 0.71*0.81*0.76*0.85*0.84*0.81*0.78*0.86  
  =~37person months  

– TDEVNS = 3.67 * 37 
0.32 = ~12monts, => 3 person in one year 

• If schedule is tighter, SCED increases effort. For example if SCED=VL 
TDEV decreases 25% (9 months), but effort raises to ~53PM 

– I.e. 6 people for 9 months!  

TIE-21100/21106 



Another example 

• http://www.codeproject.com/Articles/9266/Software-Project-

Cost-Estimates-Using-COCOMO-II-Mo 

24.3.2014 TIE-21100/21106 

35 



Function points 

• Wikipedia definition: A function point is a unit of 

measurement to express the amount of business 

functionality an information system (as a product) 

provides to a user.  

• Should be (but result debated) independent from 

programming language 

• Number of function points can be automatically 

measured from source code 

• Number of function points can be estimated from 

(detailed) functional specification of the system 

 

24.3.2014 

36 

TIE-21100/21106 



Estimation based of Function points (FiSMA) 
(Source: Pekka Forselius: Toimintopistelaskenta tuottavuuden todentajana) 

24.3.2014 

37 

TIE-21100/21106 



Estimation based of Function points (FiSMA) 

24.3.2014 

38 

Situation multiplier (0.5-2.5) 

Q (laatu) * työkalut (tools) * 

teknologian kypsyys (tech) 

Reuse (0.7–1.5) 

 

 

Delivery rate 

measures how long it 

takes to deliver a 

funtion point 

 

 

TIE-21100/21106 



24.3.2014 

39 
About budgeting  

with an arbitrary example 

• A small software company of 10 employee 

• Fulltime manager; no admin personel 

• Other employee do billable work 75% of the time 

• Reasonable rotation: on average 1 person leaves 

and joins 

• Salaries + compulsory side costs  

1.6 * 3.5 k€ * 12 kk = ~67k€ 

• Office, rents, equipments, supplies … 50% 

1.5 * 67k€ = 100k€ 

• 10 employees => costs  are ~1000k€ 

TIE-21100/21106 



24.3.2014 

40 

…example 

• Since managers work cannot be invoiced, 9 people 

generate the revenue. 

• Due to rotation, sick leaves, etc, we use estimate 8. 

Thus the company can invoice: 

 8 * 1700 * 0.75 = ~10000 working hours 

• minimum price for a working hour is 

 1000k€ / 10000 = 100€ 

• Working day costs 

 7.5 * 100 = 750€ 

• And year 

 1700 * 100 = 170k€ 

TIE-21100/21106 



Structure of the lecture 

• A few points about project planning 

– Effort, resources and time don’t have linear 

dependencies 

 

• Effort estimation 

– Art, magic … and deep understanding 

 

• Distributed and global development 

24.3.2014 

41 

TIE-21100/21106 



Reasons for distributed development 

• Size of the project 

– One team cannot finish in time 

– Not enough resources available otherwise 

 

• Need for additional competences 

– HW, databases, UI 

– Domain knowledge 

 

• Economic 

– In some places development is cheaper 

 

 

24.3.2014 

42 

TIE-21100/21106 



Global SW development 

• SW developed by a geographically distributed organization 

– Reasons like above 

• Often main reason is lower salary costs 

– Also called off-shore development 

– Real savings debated 

 

• Issues 

– Communication distance: (timezone, language cultural..). 

Serious issue since communication is major challenge in SW 

– Spirit, motivation, committment 

• ”They and us” attitude 

• No feeling of ownership 

 

 

 
24.3.2014 

43 

TIE-21100/21106 



Guidelines for planning distributed projects 

• Design for partitioning 

– Or it will happen anyways 

– Conway’s law: ” organizations which design systems ... are 

constrained to produce designs which are copies of the 

communication structures of these organizations” 

 

• Help communication 

 

• Add extra effort for 

– Communication 

– Solving problems due to bad communication 

     in your plan 

 

 

 

24.3.2014 

44 

TIE-21100/21106 


