
Lecture 11

Configuration and Version

Management

31.3.2014

31.3.2014 1 TIE-21100/21106; K.Systä

31.3.2014 TIE-21100/21106; K.Systä 2

Week Lecture Exercise

10.3 Quality in general;

Quality management systems

Patterns

17.3 Dependable and safety-critical systems ISO9001

24.3 Work planning; effort estimation Code inspections

31.3 Version and configuration management Effort estimation

7.4 Role of software architecture; product

families; software evolution

 ?

14.4 Specifics of some domains, e.g. web

system and/or embedded and real time

systems

Break?

21.4 Easter Break?

28.4 Software business, software start-ups ?

5.5 Last lecture; summary; recap for exam ?

News

• Sprint reviews on week 17:

– Most of them (if not all) will move to week 18

31.3.2014 TIE-21100/21106; K.Systä 3

Learning goals of today

• What are Configuration and Version

Management?

• Why they are important?

• How to organize version and configuration

management?

• Tools and techniques

• Example tools SVN and GIT

– Basic principles behind the guidelines you

get during other courses

31.3.2014 4 TIE-21100/21106; K.Systä

Material

• Haikala & Mikkonen: Chapter 13
”tuotteenhallinta” (Product management)

– A bit short chapter – reading of additional
material recommended

• Sommerville: Chapter 25

• Alexis Leon: Software Configuration
Management

– I have used this book as background material

31.3.2014 TIE-21100/21106; K.Systä 5

Motivation

31.3.2014 TIE-21100/21106; K.Systä 6

A B

D E

C

Leenu Liinu Leenu wants to compile the

system but how to ensure that

components D and E are in

adequate state?

Liinu has the same problem

with components A and B.

They need a certain version of

different components.

Collection of interoperable

versions of modules is called

configuration.

Motivation – becomes difficult very fast

31.3.2014 TIE-21100/21106; K.Systä 7

A B

D E

C

Leenu Liinu

Ann

Susan

A’ B’

D’ E’

C’

F G C

H I C’

Some definitions

• Wikipedia

– In software engineering, software configuration management

(SCM) is the task of tracking and controlling changes in the

software, part of the larger cross-discipline field of

configuration management

– SCM practices include revision control and the

establishment of baselines.

– If something goes wrong, SCM can determine what was

changed and who changed it.

– If a configuration is working well, SCM can determine how to

replicate it across many hosts.

31.3.2014 TIE-21100/21106; K.Systä 8

http://www.computer.org/portal/web/swebok/swebokv3

• The configuration of a system is the functional and physical

characteristic of hardware or software as set forth in technical

documentation or achieved in a product;

it can also be thought of as a collection of specific versions

of hardware, firmware or software items combined

according to specific build process or serve a particular

purpose.

• Configuration management (CM), then, is the discipline of

identifying the configuration of a system at distinct points in time

for the purpose of systematically controlling changes to the

configuration and maintaining the integrity and traceability of the

configuration throughout the system life cycle.

31.3.2014 TIE-21100/21106; K.Systä 9

One example more

(Nokia, Apple and Jolla Images)

31.3.2014 TIE-21100/21106; K.Systä 10

A
D

C

A’
D’

C’

E’

Typical solutions

31.3.2014 TIE-21100/21106; K.Systä 11

A B

D E

C

Leenu Liinu

B D C C

Leenu Liinu

Central library

of version

management

Central library

of version

management

So, what is configuration management?

• Change management: managed way to decide

which change ideas to implement and when.

• Version management: keep track of multiple

versions of components and ensure that changes by

different developers do not disturb each other.

• System building: collect and assemble correct

versions of required components and then compile.

• Release management: prepare for external releases

and keep track of external releases.

31.3.2014 TIE-21100/21106; K.Systä 12

CM terminology

Term Explanation

Configuration

item or software

configuration

item (SCI)

Anything associated with a software project (design,

code, test data, document, etc.) that has been

placed under configuration control. There are often

different versions of a configuration item.

Configuration items have a unique name.

Configuration

control

The process of ensuring that versions of systems

and components are recorded and maintained so

that changes are managed and all versions of

components are identified and stored for the lifetime

of the system.

Version An instance of a configuration item that differs, in

some way, from other instances of that item.

Versions always have a unique identifier, which is

often composed of the configuration item name plus

a version number. 13 Chapter 25 Configuration management

CM terminology

Term Explanation

Baseline A baseline is a collection of component versions that

make up a system. Baselines are controlled, which

means that the versions of the components making

up the system cannot be changed. This means that

it should always be possible to recreate a baseline

from its constituent components.

Codeline A codeline is a set of versions of a software

component and other configuration items on which

that component depends.

Mainline A sequence of baselines representing different

versions of a system.

Release A version of a system that has been released to

customers (or other users in an organization) for

use.

14 Chapter 25 Configuration management

CM terminology

Term Explanation

Workspace A private work area where software can be modified

without affecting other developers who may be using

or modifying that software.

Branching The creation of a new codeline from a version in an

existing codeline. The new codeline and the existing

codeline may then develop independently.

Merging The creation of a new version of a software

component by merging separate versions in different

codelines. These codelines may have been created

by a previous branch of one of the codelines

involved.

System

building

The creation of an executable system version by

compiling and linking the appropriate versions of the

components and libraries making up the system.

15 Chapter 25 Configuration management

Figure 25.1 in Sommerville

31.3.2014 TIE-21100/21106; K.Systä 16

Component

versions

System

versions

System

releases

System

building

Change

management

Version

management

Release

management

Change

proposals

Software configuration management

vs

Configuration management software

• Latter is about managing system, taking care of updates,

installation etc.

31.3.2014 TIE-21100/21106; K.Systä 17

Change management

31.3.2014 TIE-21100/21106; K.Systä 18

Development vs. maintenance

• Most of the development is actually about applying changes

– Products often have several versions that are implemented

in separate projects

– In a project plans or requirements change during the project

– Software might be in a maintenance mode

• Different types of changes:

– Bug fixes

– Performance improvements

– React to environmental changes

(HW, legal, …)

– New features of other requirement changes

• Contrast to maintenance of machines, e.g. cars, where

maintenance is due to physical and chemical wearing

31.3.2014 TIE-21100/21106; K.Systä 19

Steering Project

Project

preparation
Project-

proposal

project

decision
Project

description

Project

planning

Project plan Steering group
Approval of

project plan

Follow-up and

steering

Ending of

the project

Acceptance of

the results

Progress

reports

Steering

Change-

proposals

Results

End-report

E
x

e
c

u
tio

n
 o

f th
e

 p
ro

je
c

t

Updated

project

plan

27.1.2014 TIE-21100/21106/K.Systä 20

From lecture 3

(project

management)

Development

Customer support

Figure 25.1 in Sommerville

31.3.2014 TIE-21100/21106; K.Systä 21

Submit

CR

Change

requests

Check

Close Register

Product management

Analysis

(cost/impact)
Assess

Select

Close

Modify SW

Test SW

Close

Question

(discussion during lecture)

• How should change management be done in Scrum

31.3.2014 TIE-21100/21106; K.Systä 22

Version Management

31.3.2014 TIE-21100/21106; K.Systä 23

Simple view of version management

31.3.2014 TIE-21100/21106; K.Systä 24

Version

Management

System

Modifications

Test
Validate

Approve

Document

Check-out

Check-in

Versions; version trees

31.3.2014 TIE-21100/21106; K.Systä 25

1.0 1.1 1.2 1.3

1.1b 1.2b 1.3b

1.3c

1.4

1.4c

Functions of version management

• Version and release identification

• Storage management to optimize storage usage

• Change history recording

• Independent development

• Project support

A short history of version control systems

• SCCS – the first widely used

– Origin from 1972

– Was a standard part of many Unix systems

– Sccsid string:

static char sccsid[] = "@(#)ls.c 8.1 (Berkeley) 6/11/93";

• RCS was built as an alternative to SCCS

– Stores latest version and backward ”deltas”

– Supported binary files

• CVS introduced client-server architecture

– Based on RCS

• SVN & GIT the most common open source tools today

• Many commercial alternatives

31.3.2014 TIE-21100/21106; K.Systä 26

SVN vs GIT

• Different models

– With SVN users work on common repository and commit

changes to the latest version

– In GIT users get their own copy of repository and commits to

that. The changes are made visible to others after merging

• Concept of version

– SVN has version numbering

– GIT has names

but you can simulate numbering by
% git tag 1.6.1 -m 'Release 1.6.1'

31.3.2014 TIE-21100/21106; K.Systä 27

Start work with

git clone url

Make branch to you

git checkout -b branch

origin/branch

Get latest from server

git pull

Add/remove files

git add file

git rm file

Commit changes

git commit –a

(git pull)

git merge

git push

svn checkout url

svn switch url

svn update

svn add file

svn rm file

svn commit

31.3.2014 TIE-21100/21106; K.Systä 28

Installing and setting up a tool

is not enough for your project

• You need to agree and document your practices

• When to commit

• When to branch

• How to tag

31.3.2014 TIE-21100/21106; K.Systä 29

Don’t

do as

your

teach

er

does,

do as

he

says.

31.3.2014 TIE-21100/21106; K.Systä 30

Configuration management

31.3.2014 TIE-21100/21106; K.Systä 31

Configuration: collection of certain versions of

components

31.3.2014 TIE-21100/21106; K.Systä 32

1.0 1.1 1.2 1.3

1.1b 1.2b 1.3b

1.3b

1.4

1.4b

1.0 1.1 1.2 1.3

1.1b 1.2b

1.0 1.1 1.2 1.3
Current project-based version

control tools like SVN and GIT

can (sometimes) also be used

for configuration management.

Build management

31.3.2014 TIE-21100/21106; K.Systä 33

The early days: Makefile CC = gcc

CFLAGS = -O

DEST = ${HOME}/bin

EXTHDRS = /usr/include/ctype.h /usr/include/stdio.h

HDRS = tree.h

LDFLAGS =

LIBS =

LINKER = gcc

OBJS = tree.o treealloc.o treemain.o treeprint.o treeword.o

PROGRAM= a.out

SRCS = tree.c treealloc.c treemain.c treeprint.c treeword.c

all: $(PROGRAM)

$(PROGRAM): $(OBJS) $(LIBS)

 $(LINKER) $(LDFLAGS) $(OBJS) $(LIBS) -lm -o $(PROGRAM)

clean:; rm -f $(OBJS)

install: $(PROGRAM)

 install -s $(PROGRAM) $(DEST)

tree.o: tree.h /usr/include/stdio.h

treealloc.o: tree.h /usr/include/stdio.h

treemain.o: tree.h /usr/include/stdio.h

treeprint.o: tree.h /usr/include/stdio.h

treeword.o: tree.h /usr/include/stdio.h /usr/include/ctype.h

31.3.2014 TIE-21100/21106; K.Systä 34

Functions of build management

• Build script generation

– Makefile (make) runs the commands

• Integration to version management

– Already in the early days ”make” has SCCS integration

• Minimal recompilation

– ”Make” check time stamps of files

• Executable system generation

• Test automation

• Reporting

• Document generation

31.3.2014 TIE-21100/21106; K.Systä 35

Figure 25.11 in Sommerville

31.3.2014 TIE-21100/21106; K.Systä 36

Source

code files

Configuration

files

Executable

tests

Data

files

Build

management

Executable

Target System

Libraries
Compilers

and Tools

Test

results

Another tool Ant (http://ant.apache.org/)

• Apache Ant is a Java library and command-line tool whose

mission is to drive processes described in build files as targets

and extension points dependent upon each other.

• The main known usage of Ant is the build of Java applications.

Ant supplies a number of built-in tasks allowing to compile,

assemble, test and run Java applications.

• Ant can also be used effectively to build non Java applications,

for instance C or C++ applications.

• More generally, Ant can be used to pilot any type of process

which can be described in terms of targets and tasks.

31.3.2014 TIE-21100/21106; K.Systä 37

Ant vs make

Ant says:

• Ant is different. Instead of a model where it is extended with

shell-based commands, Ant is extended using Java classes.

• Instead of writing shell commands, the configuration files are

XML-based, calling out a target tree where various tasks get

executed.

• Each task is run by an object that implements a particular Task

interface.

But on reason is that Ant knows Java and can optimize use of Java

compiler

You can find several debates from the Internet

And there are other alternatives, too. E.g. maven or rake.

31.3.2014 TIE-21100/21106; K.Systä 38

Continuous integration
(http://www.martinfowler.com/articles/continuousIntegration.html)

• Suggested by many agile methods, for example XP.

• The team integrates latest changes to complete

system frequently – even several times a day.

• Often combined with test-driven development

• Benefits

– Reduced risk (and earlier discovery)

– Helps in getting rid of bugs

– Avoid chaos at the end (integration hell)

– Changes behavior of programmers,

more carefully written and simpler code

31.3.2014 TIE-21100/21106; K.Systä 39

Practices of continuous integration

• Practices of Continuous Integration

• Maintain a Single Source Repository.

• Automate the Build

• Make Your Build Self-Testing

• Everyone Commits To the Mainline Every Day

• Every Commit Should Build the Mainline on an Integration

Machine

• Keep the Build Fast

• Test in a Clone of the Production Environment

• Make it Easy for Anyone to Get the Latest Executable

• Everyone can see what's happening

• Automate Deployment

31.3.2014 TIE-21100/21106; K.Systä 40

Figure 25.12 in Sommerville

31.3.2014 TIE-21100/21106; K.Systä 41

Version

Management

Private

Workspace

Checkout

Mainline

Build and

Test System
Make

Changes

Build and

Test System

Commit

changes

Build

Server

Version

Management

Build and

Test System

fail

Check-in to

Build Server

An example tool for CI: Jenkins

• Very commonly used open source tool

• Run build (e.g. Ant) and automatic test (e.g. Junit) scripts

• Integrates with very many version management systems

• Can be triggered automatically by version management

• Can be triggered by sending email

• Build running in batch mode – users can see the status

• Let look at tutorial at:

http://www.vogella.com/tutorials/Jenkins/article.html

31.3.2014 TIE-21100/21106; K.Systä 42

http://www.vogella.com/tutorials/Jenkins/article.html
http://www.vogella.com/tutorials/Jenkins/article.html

31.03.2014 WE RUN OUT OF

TIME AND STOPPED HERE.

FOLLOWING SLIDES WILL BE

COVERED 7.4

31.3.2014 TIE-21100/21106; K.Systä 43

Release management

31.3.2014 TIE-21100/21106; K.Systä 44

About release management

• Releases go to external customers/users the vendor should be

able to answer questions on that particular release.

• Often include major and minor releases

– Powerpoint 14.0.7116.5000 (32-bit)

– Thunderbird 17.0.11

• Customer-specific and mass-market SW impose different

challenges

• When problem occurs the HW configuration should available

• Full traceability is expected

• Releases should be well tested, well documented, …

• Installation/deployment need to be planned

• Updates need to be planned

– Technical, commercial

31.3.2014 TIE-21100/21106; K.Systä 45

But on the other hand, sometimes …

IDEAS

PRODUCT DATA

BUILD LEARN

MEASURE

Code Faster

Unit Tests
Usability Tests

Continuous Integration
Incremental Deployment

Free & Open-Source Components
Cloud Computing

Cluster Immune System
Just-in-time Scalability

Refactoring
Developer Sandbox

Minimum Viable Product

Measure Faster
Split Tests
Clear Product Owner
Continuous Deployment
Usability Tests
Real-time Monitoring
Customer Liaison

Learn Faster

Split Tests
Customer Interviews
Customer Development
Five Whys Root Cause Analysis
Customer Advisory Board
Falsifiable Hypotheses
Product Owner Accountability
Customer Archetypes
Cross-functional Teams
Semi-autonomous Teams
Smoke Tests

Funnel Analysis
Cohort Analysis

Net Promoter Score
Search Engine Marketing

Real-Time Alerting
Predictive Monitoring

Continuous delivery/deployment;

A/B testing

• Sometimes it is important to get fast feedback from market

– Lean Startup

• Also part of DevOps

• Used for development of customer software and Internet-

services

• A/B testing (split testing):

– Randomly give different users different versions of the

system and systematically compare.

31.3.2014 TIE-21100/21106; K.Systä 47

One claim
(http://blog.crisp.se/2013/02/05/yassalsundman/continuous-

delivery-vs-continuous-deployment)

31.3.2014 TIE-21100/21106; K.Systä 48

31.3.2014 TIE-21100/21106; K.Systä 49

Week Lecture Exercise

10.3 Quality in general;

Quality management systems

Patterns

17.3 Dependable and safety-critical systems ISO9001

24.3 Work planning; effort estimation Code inspections

31.3 Version and configuration management Effort estimation

7.4 Role of software architecture; product

families; software evolution

 ?

14.4 Specifics of some domains, e.g. web

system and/or embedded and real time

systems

Break?

21.4 Easter Break?

28.4 Software business, software start-ups ?

5.5 Last lecture; summary; recap for exam ?

