
Software Engineering Methodology
Lecture 7, 24.2.2014

Kari Systä

24.2.2014 TIE-21100-6/Kari Systä 1

Today

• Summary of Lean and Kanban

• Continuous Deployment, DevOps (we did not
have time to cover it last week)

• Quality assurance

– Inspections and reviews

– Testing

24.2.2014 TIE-21100-6/Kari Systä 2

This weeks weekly exercise

• Tue 11.02.2014 at 10-12 and 12-14

• Wed 12.02.2014 at 12-14

• Thu 13.02.2014 at 12-14 and 14-16

• In TC217!

24.2.2014 TIE-21100-6/Kari Systä 3

Initial content of lectures
• Introduction
• Life-cycle models, their

background
• Project management, product

management, project planning –
in general management aspects

• Scrum in details
• Requirement elicitation,

requirement management,
requirements prioritization

• New trends: Lean, Kanban, Lean
Start-up,

• Continuous deployment, DevOps;
Review practices, testing and
quality assurance (TIE-21200 will
go deeper)

• Another perspective to quality:
“Quality systems” and process
improvement

• Version management,
configuration management,
continuous integration

• Architecture issues, role of
architect, architectural quality
attributes, product families, ….
(TIE-21300 will go deeper)

• Embedded and real-time systems
(other courses will go deeper)

• Safety-critical and dependable
systems

• Effort estimation
• Software business, software

start-ups
• Recap

24.2.2014 TIE-21100-6/Kari Systä 4

Summary of lean

• Avoid waste

• Make progress and state visible

• Deliver fast and continuously

• Build quality in & fix problems immediately (stop the work)

• ”Japanese dictionary”
– continuous improvement (kaizen)

– relentless reflection (hansei)

– thoroughly understand the situation (genchi genbutsu)

– Decide slowly; implement rapidly (nemawashi)

– Level out the workload (heijunka)

24.2.2014 TIE-21100-6/Kari Systä 5

Summary of Kanban

• Visualise

• Limit Work-in-progress (WIP)

• Manage flow

• Make policies explicit

• Implement feedback loops

• Improve collaboratively, evolve experimentally
(using models and the scientific method)

 24.2.2014 TIE-21100-6/Kari Systä 6

http://commons.wikimedia.org/wiki/File:Kanban_board_example.jpg

24.2.2014 TIE-21100-6/Kari Systä 7

• Have every problem once

• Stop the line when anything fails

• Fast response over prevention

24.2.2014 TIE-21100-6/Kari Systä 8

DevOps
(http://dev2ops.org/2010/02/what-is-devops/)

• DevOps is a response to the growing awareness that there is a disconnect
between what is traditionally considered development activity and what is
traditionally considered operations activity. This disconnect often
manifests itself as conflict and inefficiency.

• Wall of confusion

24.2.2014 TIE-21100-6/Kari Systä 9

24.2.2014 TIE-21100-6/Kari Systä 10

The lifecycle

24.2.2014 TIE-21100-6/Kari Systä 11

24.2.2014 TIE-21100-6/Kari Systä 12

Content of DevOps

• Typically uses agile development processes

• Increased rate of production releases
(Continuous development)

• Common tools

• Use of virtualized and cloud infrastructure
from internal and external providers

• Increased usage of data center automation
and configuration management tools

24.2.2014 TIE-21100-6/Kari Systä 13

Material

• Liker: The 14 Principles of the Toyota Way: An Executive Summary of the.
Culture Behind TPS
http://icos.groups.si.umich.edu//Liker04.pdf

• Alan Shalloway, Demyhstifying Kanban
http://www.netobjectives.com/files/resources/articles/Demystifying-
Kanban.pdf

• Aspects of Kanban
http://www.methodsandtools.com/archive/archive.php?id=104

• http://www.netobjectives.com/blogs/real-differences-between-kanban-
and-scrum

• Presentation by Eric Ries:
http://www.gov2summit.com/gov2009/public/schedule/detail/10560

• DevOps: http://dev2ops.org/2010/02/what-is-devops/
•

24.2.2014 TIE-21100-6/Kari Systä 14

http://icos.groups.si.umich.edu/Liker04.pdf
http://icos.groups.si.umich.edu/Liker04.pdf
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf
http://www.methodsandtools.com/archive/archive.php?id=104
http://www.methodsandtools.com/archive/archive.php?id=104
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum
http://www.gov2summit.com/gov2009/public/schedule/detail/10560
http://www.gov2summit.com/gov2009/public/schedule/detail/10560
http://dev2ops.org/2010/02/what-is-devops/
http://dev2ops.org/2010/02/what-is-devops/
http://dev2ops.org/2010/02/what-is-devops/
http://dev2ops.org/2010/02/what-is-devops/
http://dev2ops.org/2010/02/what-is-devops/
http://dev2ops.org/2010/02/what-is-devops/
http://dev2ops.org/2010/02/what-is-devops/

REVIEWS AND INSPECTIONS

24.2.2014 TIE-21100-6/Kari Systä 15

Terminology
Inspection = tarkastus
• Internal event in the project - not strictly tied to project schedules (next

phase may start)
• Sole purpose is in detecting defects for early correction
• Relatively small amount of work under inspection
• The whole material (to be inspected) is scanned through
• More "formal", diary/log/minutes is kept
• Documents, code, prototypes,...
(Technical) Review = katselmointi, katselmus, tekninen katselmus
• Formal event to check that a milestone have been reached; makes a

milestone in a project visible (go / no-go)
• The entire phase product
• Number of participants can be large and different stakeholders less

formal, diary/log/minutes maybe not kept, just "scanning" material.
Walkthrough (, walk-thru) = läpikäynti
• Informal - “what the designer thinks his/her code does”.
Assessment
• Usually for processes (will be discussed in next lecture)

24.2.2014 TIE-21100-6/Kari Systä 16

Definitions

• IEEE 610.12-1990:
inspection = a static analysis technique that relies on visual
examination of development products to detect errors, violations of
development standards, and other problems. Types include code
inspection; design inspection.
review = a process or meeting during which a work product, or set of
work products, is presented to project personnel, managers, users,
customers, or other interested parties for comment or approval. Types
include code review, design review, formal qualification review,
requirements review, test readiness review.
walk-through = a static analysis technique in which a designer or
programmer leads members of the development team and other
interested parties through a segment of documentation or code, and
the participants ask questions and make comments about possible
errors, violation of development standards, and other problems.

24.2.2014 TIE-21100-6/Kari Systä 17

Difference between inspection and reviews

• There are two intentions

– Inspect to find errors

– Review to ensure that milestone has been
reached, i.e., all conditions of the milestone are
met

• Procedure may very similar

• The meeting in inspections is often called
review

24.2.2014 TIE-21100-6/Kari Systä 18

Inspections

• Very efficient way to find errors

• Fagan: "Design and code inspections to reduce
errors in program development", IBM Systems
Journal, 1976.

• Requires effort – is an investment

24.2.2014 TIE-21100-6/Kari Systä 19

Side note: pair programming
This not inspection

• Cockburn, Williams: The Costs and Benefits of Pair Programming
• Two programmers work collaboratively on the same algorithm,

design or programming task, sitting side by side at one
computer.

• One writes code and the other “inspects”

24.2.2014 TIE-21100-6/Kari Systä 20

About economy of inspections

• To find defects as early as possible
• To make design, central code, documents etc as

stable (and as early) as possible with the help of
technical colleagues’ input and experience.

• 5% to 15% of project cost (working time)
• Finds up to 80% of the defects in product

(normally less, never 100 %)
• Cost effective in improving quality
• Testing is too late; all faults in specs, design

documents etc. are already implemented. That is
why inspections are needed and are cost effective

24.2.2014 TIE-21100-6/Kari Systä 21

Inspection in practice

24.2.2014 TIE-21100-6/Kari Systä 22

Planning Overview Preparation

Meeting Rework Rework

Sommerville drawing of the process

24.2.2014 TIE-21100-6/Kari Systä 23

Roles
(http://www.softwareengineering-9.com/Web/QualityMan/roles.html)

Grady and Van Slack (Grady and Van Slack, 1994) suggest six roles:
• Author or owner. The programmer or designer responsible for

producing the program or document. Responsible for fixing defects
discovered during the inspection process.

• Inspector. Finds errors, omissions and inconsistencies in programs
and documents. May also identify broader issues with the code
being inspected such as lack of portability.

• Reader. Presents the code or document at an inspection meeting.
• Chairman or moderator. Manages the process and facilitates the

inspection. Reports process results to the chief moderator.
• Scribe. Records the results of the inspection meeting.
• Chief moderator. Responsible for inspection process improvements,

checklist updating, standards development, etc. Not necessarily
involved in all inspections.

24.2.2014 TIE-21100-6/Kari Systä 24

Roles (as instructed in our project course)

Moderator, coordinator, chairman, leader
• Leads the meeting; keep the discussion in defects, may

even cancel the meeting at start if it seems to be worthless
(e.g. poor material or poor preparation) !

Inspectors, checkers, participants
• Voice comments on the section read, and look for errors
Secretary
• Fill in defect list
Author
• Get a clear understanding about what needs to be

corrected.

24.2.2014 TIE-21100-6/Kari Systä 25

Good practices (from project course)
no need to ask "turn to speak"
if you don't have any comments for that section/paragraph/line, no need to
say that
speak shortly (no coffee table conversations)
if you are in doubt (if there is an unclear matter), ask !
"is that an error or not ?", unclear matters should be recorded to
diary/log/minutes
"a professional attitude" is the best; do it right, do it once, don't waste time.
Do do not discuss solution

It helps a lot if the diary/log/minutes is visible to all participants all the time
• everybody can see and check what was written down
• to see if secretary did understand finding/question right
• is the speed too fast (or slow) considered to writing diary
• no need for repetition/review of diary at the end of inspection.
If target is "ready" and people are prepared well, inspection goes fast and
easy.

24.2.2014 TIE-21100-6/Kari Systä 26

Typical problems
• unprepared attendees ("I'm in a hurry" is no excuse !!!)
• unstable (draft) specs, interfaces in code
• inspection changes into a design meeting
• unrelevant comments
• too much material
• follow-up not performed
• "crying" author or moderator
• document prepared in isolation, hopeless quality, somebody should

prechecked
• process differences
• political decisions (e.g. QA vs. delivery deadlines)
• inspections simply not performed
• disturbances (phones, people coming late or leaving early,...).

24.2.2014 TIE-21100-6/Kari Systä 27

http://www.cs.tut.fi/kurssit/OHJ-3500/2012-13/tilastoja.html

Simple data collected from course document inspections
• duration of inspection; e.g. 1,75 h
• total inspection time (prep+insp); e.g. 22,5 h
• number of findings; e.g. 23
• number of pages in document; e.g. 37.
From these the following statistics can be calculated easily:
• error density; errors / page (e.g. 0,62)
• speed of inspection; pages / hour (e.g. 21,14)
• speed, number of findings per hour; errors / hour (e.g.

13,14)
• time for finding one error; total inspection time / number

of errors (e.g. 0,98 h)
• time spent for one page; inspection time / page (e.g. 2,84

min).

24.2.2014 TIE-21100-6/Kari Systä 28

Reviews and agile methods

• The review process in agile software development is
usually informal.
– In Scrum, for example, there is a review meeting after each

iteration of the software has been completed (a sprint
review), where quality issues and problems may be
discussed.

• In extreme programming, pair programming ensures
that code is constantly being examined and reviewed
by another team member.

• XP relies on individuals taking the initiative to improve
and refactor code. Agile approaches are not usually
standards-driven, so issues of standards compliance
are not usually considered.

29 Chapter 24 Quality management

One Agile method, Feature-Driven
Development, recommends use of inspections

Develop features using the following practices:
• Domain Object Modeling
• Developing by Feature
• Component/Class Ownership
• Feature Teams
• Inspections
• Configuration Management
• Regular Builds
• Visibility of progress and results

24.2.2014 TIE-21100-6/Kari Systä 30

Lean community has developed capture-recapture code inspection
(http://leansoftwareengineering.com/2007/06/05/the-capture-recapture-code-inspection/)

24.2.2014 TIE-21100-6/Kari Systä 31

Theory
𝑁 =

𝑛1 ∗ 𝑛2

𝑚

𝑁 =
(𝑛1+1)(𝑛2+1)

(𝑚+1)
 - 1

N = Estimate of total defect
population size
n1 = Total number of defects
discovered by first reviewer
n2 = Total number of defects
discovered by second
reviewer
m = Number of common
defects discovered by both
reviewers

24.2.2014 TIE-21100-6/Kari Systä 32

n1 n2 m N1 N2

1 10 1 10 10

2 9 2 9 9

3 8 2 12 11

4 7 2 14 12

5 6 2 15 13

6 5 2 15 13

7 4 1 28 19

8 3 1 24 17

9 2 1 18 14

10 1 1 10 10

Capture-recapture code inspection

The basic version requires four roles:
• the reviewee
• reviewer A
• reviewer B
• review moderator
• Approximately 200 lines of code will result in the

highest inspection yield
• Code sent to sent to the two reviewers
• The reviewers bring their marked-up documents to the

review meeting. Each inspector will enumerate his
findings, and the group will validate each defect.

24.2.2014 TIE-21100-6/Kari Systä 33

Walk-through

• More light-weight than inspections

• Informal - “what the designer thinks his/her
code does”.

• The second motivation is spreading
information

• Very useful for code-segment that all other
developers use or are dependent on

24.2.2014 TIE-21100-6/Kari Systä 34

TESTING

24.2.2014 TIE-21100-6/Kari Systä 35

Testing
Disjkstra:

• ”Testing can only show presence of errors, not their
absence”

Inspections and testing both have their roles:

• In testing error can mask other errors

• Incomplete versions can inspected

• Inspections can consider broader set of quality
attributes

• Tests are easy to repeat

• Testing can discover issues that relate timing,
interactions between different parts of software, …

24.2.2014 TIE-21100-6/Kari Systä 36

• TIE-21200 Ohjelmistojen testaus / TIE-21200 Software Testing

• Learning outcomes of the course (SG*)

• Opiskelija tuntee testaamisen peruskäsitteet ja -tekniikat yksikkö-,
integrointi-, järjestelmä- ja hyväksyntätestaustasolla sekä osaa
soveltaa niitä ohjelmistotyössä kaikissa elinkaaren vaiheissa.
Opiskelija tunnistaa sellaiset testaukseen liittyvät tehtävät, jotka
voidaan joka osittain tai kokonaan automatisoida työkalujen avulla.
Lisäksi opiskelija osaa käyttää vähintään yhtä
automatisointityökalua.

• Students knows fundamental concepts of testing, and techniques
for unit, integration, system and acceptance testing and apply these
in all phases of software development.
Student recognizes testing tasks that can partly or completely
automated.
In addition, students will lean to use at least one test-automation
tool.

24.2.2014 TIE-21100-6/Kari Systä 37

Testing – traditional categorization

20.1.2014

38

Vendor

Customer

TIE-21100&21106/K.Systä

Unit

 Testing

Unit

 Testing

Unit

 Testing

Integration

Testing

System

 Testing

Acceptance

 Testing

V-moded

9.9.2013 39

Specification

Architecture

design

Detailed

design

System

testing

Integration

testing

Unit

testing

JOTU/K.Systä

Unit testing

• Software unit is tested before it is integrated to other parts of the

system

• Typically the size of tested unit is 100-1000 lines of code

• To run a unit in isolation developers need use test-beds and test

drivers

• For example if the unit is a class or object, the test should

– Call each method with a representative parameter values

– Set and check values of attributes

– Put object to different states

20.1.2014 TIE-21100&21106/K.Systä 40

Integration testing
(Sommerville uses term Component testing)

• Test how units work together

• Usually concentrates in major interfaces in the
software

24.2.2014 TIE-21100-6/Kari Systä 41

A B

C

Test cases

Black box and white box testing

24.2.2014
TIE-21100-6/Kari Systä

42

A B

A

Test cases

A B

A

Test cases

About test coverage

int foo (int x, int y) {

 int z = 0;

 if ((x>0) && (y>0)){

 z = x;

 } else if (x*y > 0) {

 z = x + 1;

 }

 return z;

}

24.2.2014 TIE-21100-6/Kari Systä 43

Code coverage

Condition/decision coverage

Parameter value coverage

…

This weeks weekly exercise

• Tue 11.02.2014 at 10-12 and 12-14

• Wed 12.02.2014 at 12-14

• Thu 13.02.2014 at 12-14 and 14-16

• In TC217!

24.2.2014 TIE-21100-6/Kari Systä 44

System testing

• System is addresses the complete system

• Compared to functional specification and use
manual

• Acceptance testing is a form of system testing
that is done together with the customer

– Passing a. test is prerequisite for approval of the
delivery

24.2.2014 TIE-21100-6/Kari Systä 45

System and acceptance testing

• May include

– Field testing

– Performance testing

– Load testing

– Reliability testing

– Installation testing

– User / Usability testing

24.2.2014 TIE-21100-6/Kari Systä 46

Test planning
http://www.softwareengineering-9.com/Web/Testing/Planning.html

• The testing process A description of the major phases of the system testing process. This may be
broken down into the testing of individual sub-systems, the testing of external system interfaces,
etc.

• Requirements traceability Users are most interested in the system meeting its requirements and
testing should be planned so that all requirements are individually tested.

• Tested items The products of the software process that are to be tested should be specified.

• Testing schedule An overall testing schedule and resource allocation. This schedule should be linked
to the more general project development schedule.

• Test recording procedures It is not enough simply to run tests; the results of the tests must be
systematically recorded. It must be possible to audit the testing process to check that it has been
carried out correctly.

• Hardware and software requirements This section should set out the software tools required and
estimated hardware utilisation.

• Constraints Constraints affecting the testing process such as staff shortages should be anticipated in
this section.

• System tests This section, which may be completely separate from the test plan, defines the test
cases that should be applied to the system. These tests are derived from the system requirements
specification.

24.2.2014 TIE-21100-6/Kari Systä 47

Testing and waterfall

9.9.2013 48 JOTU/K.Systä

System testing

Unit and
integration testing

Often independent test team is
used because they do not have
same preassumptions as developers.
Testing – especially writing good test cases
is a skill of its own.

Testing and Agile
• Testing is a crucial part of agile processes

• The iterative nature means that already changed code need to
be tested again
=> A lot of regression testing needed

=> Test automation is an important tool in Agile

• Test driven development is often use with Agile

24.2.2014 TIE-21100-6/Kari Systä 49

Identifty new
functionality

Write tests Run test
Implement

Functionality and
refactor

24.2.2014 TIE-21100-6/Kari Systä 50

Test automation & continuous integration

• Continuous integration

– Whenever a task is completed, it is integrated to
the system

– Each time the whole set of tests will be executed

Automated tests are important

• Continuous integration is common in Agile
and especially Lean approaches

24.2.2014 TIE-21100-6/Kari Systä 51

Summary

• Two ways to improve quality
– Inspections & reviews

– Testing

• One big theme was not discussed:
– Selection of good test cases that will ne discussed in

the testing course

• Next lecture (10.3):
– Quality systems and quality standards

– General about quality

– Maybe more about testing

24.2.2014 TIE-21100-6/Kari Systä 52

