
Software development processes
 Life-cycle Models

Lecture 2

Kari Systä

20.1.2014 TIE-21100&21106/K.Systä 1

About weekly exercises

• TUE 1015-1200 TC131 Free space

• TUE 1214-1400 TC131 full

• WED 1015-1400 TC163 Free space

• WED 1215-1400 TC131 full

• WED 1415-1600 TC128 full

• WED 1615-1800 TB207 cancelled

• THU 1415-1600 TC163 full

• THU 1415-1600 TC163 Free space

Possible questions to tero.ahtee@tut.fi

20.1.2014 TIE-21100&21106/K.Systä 2

About project / assignment

• Will be done in groups of 4

• IDLE for registering will be opened 20.1 and
deadline is 27.1.
– Groups fixed by 31.1

– If you do not have complete group, you should still
register. The staff will combine.

• Project will run in 4 Sprints

• Instructions (still under preparation)
http://www.cs.tut.fi/kurssit/TIE-21106/assignment/index.html

20.1.2014 TIE-21100&21106/K.Systä 3

For those who are on one of the last courses

• Are you looking for a master thesis topic with ambition to post grad
studies after thesis, or are you graduated and want to aim at
doctoral studies?

• Are your a skillful SW developer?

• Do you know basics Web and Cloud?

• Interested in working on International ITEA2 project EASI-CLOUDS
and collaborate Finnish and European partners.

• In case of 4xYES, please send your application to kari.systa@tut.fi
with the following data
– You CV

– Study records

– Initial research plan for your post grad studies

– Statement on why you want to join the project and what kind of tasks you
want to take in the project.

mailto:kari.systa@tut.fi

Learning goals of today and
the whole course

• What are process models and why they exists?

• Know basics of a few well-known process models

• And what are the motivations behind the models

– To ”behave better”

– (Some day) to select life-cycle model for your
organization

• Know how to participate in the work efficiently

20.1.2014 TIE-21100&21106/K.Systä 5

Initial content of lectures

• Introduction
• Life-cycle models, their

background
• Project management, product

management, project planning –
in general management aspects

• Scrum in details
• Kanban, Customer Development

and DevOps details

• Requirement definition,
requirement management,
requirements prioritization

• Version management,
configuration management,
continuous integration

• Architecture issues, role of
architect, architectural quality
attributes, product families, ….
(TIE-21300 will go deeper)

• Testing and quality assurance
(TIE-21200 will go deeper)

• “Quality systems” and process
improvement

• Embedded and real-time systems
(other courses will go deeper)

• Safety-critical and dependable
systems

• Effort estimation
• Software business, software

start-ups
• Recap

2014-01-13 TIE-21100/21106 6

Life-cycle models
http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf

• A software life cycle model is either a descriptive or prescriptive
characterization of how software is or should be developed.

• Guideline to organize, plan, staff, budget, schedule and manage
software project work over organizational time, space, and
computing environments.

• Prescriptive outline for what documents to produce for delivery to
client.

• Basis for determining what software engineering tools and
methodologies will be most appropriate to support different life cycle
activities.

• Framework for analyzing or estimating patterns of resource allocation
and consumption during the software life cycle (Boehm 1981)

• Basis for conducting empirical studies to determine what affects
software productivity, cost, and overall quality.

20.1.2014 TIE-21100&21106/K.Systä 7

Software Process Models

• In contrast to software life cycle models,
software process models often represent a
networked sequence of activities, objects,
transformations, and events that embody
strategies for accomplishing software
evolution.

• Such models can be used to develop more
precise and formalized descriptions of
software life cycle activities.

20.1.2014 TIE-21100&21106/K.Systä 8

Life-cycle model and process model

• Often seen as synonyms. For example
wikipedia.org/wiki/Software_development_process
writes:
– A software development process, also known as a

software development life-cycle (SDLC), is a structure
imposed on the development of a software product.

• https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-
cycle-models.pdf:

• Lifecycle models: Phases in the life of an artifact, e.g., a
system

• Process models: Activities performed on artifacts, e.g.,
• development activities

20.1.2014 TIE-21100&21106/K.Systä 9

https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf

Don’t PANIC

• We mostly do not care about the possible
difference in this course

20.1.2014 TIE-21100&21106/K.Systä 10

20.1.2014 11

Need/idea Prestudy

Forget Develop Order project

Tailor

Requirements

Buy

Design

Implement.

Test

Deployment
Maintenance Closure

Select supplier

TIE-21100&21106/K.Systä

From needs to
software

Waterfall model - simplified

20.1.2014 12

Specification

Design

Implementation

Testing

TIE-21100&21106/K.Systä

Royce, 1970
(http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf)

20.1.2014 13 TIE-21100&21106/K.Systä

Principles of waterfall

• Waterfall is often understood as one-directional flow,

but Royce considered iterations as a crucial part of the

model.

(mainly between consecutive steps)

• Waterfall is a plan-driven approach

• Move from step to next is a decision and often involves

reviews, re-planing, budget decisions etc.

• Proper design and plan prevents extra work (and cost)

in next steps

• The earlier the mistake is done, the more expensive it is

• Waterfal is consistent with other engineering processes

20.1.2014 TIE-21100&21106/K.Systä 14

Documentation is a crucial part of waterfall
(on possible example)

20.1.2014 TIE-21100&21106/K.Systä 15

System

requirements

Software

requirements

Analysis

Program

design

Coding

Testing

Operations Maintenance

Requirement

Specification

Test plan

Architecture

design

Final design

(as built)

Detailed

design

Interface

design

Test report

Old and classic joke

20.1.2014

16

TIE-21100&21106/K.Systä

Problems with waterfall

• Does not support division of the software to distinct stages

– It is difficult to take out and use partial functionality

• Difficult to respond to changing customer requirements

• Management and motivation challenges of developers

– Does not utilize full talent and motivation of talented and

highly trained software developers

– Does not show trust and empowerment

• Usually, waterfall is considers suitable for projects where

– Requirements can be know in advance

– Milestone reviews and audits are needed for example by

security standards,

20.1.2014 TIE-21100&21106/K.Systä 17

For example

20.1.2014 TIE-21100&21106/K.Systä 18

Prototyping

• Motivations:

– Get feedback

– Ensure that selected technology works

– Gain commitment

• Evolutionary prototype

– Stepwise development towards product

• Throw-away prototype

– Allows optimization

• Can be combined with waterfall

20.1.2014 TIE-21100&21106/K.Systä 19

Precursor of interative models: Spiral Model
(picture from: http://www.sei.cmu.edu/reports/00sr008.pdf)

20.1.2014 TIE-21100&21106/K.Systä 20

Fundamentals of spiral model

• Spiral model is a risk-driven process and handling

risks is explicit

• Each loop is split to four sectors

1) Objective setting

2) Risk assessment and reduction

3) Development and validation

4) Planning

• Spiral model is not a series of waterfalls !

(A common misconception)

20.1.2014 TIE-21100&21106/K.Systä 21

Rational Unified Process (RUP)

• Derived from UML and Unified Software

Development Process

• Large and complex, but the purpose is not

that all companies adopt all practices

• Three views

– Dynamic: phases over time

– Static: process activities

– Practice

20.1.2014 TIE-21100&21106/K.Systä 22

Phases in RUP

• Inception: business case and stakeholders

• Elaboration: spec, design, plan

• Construction: ”the real work”

• Transition: to users

20.1.2014 TIE-21100&21106/K.Systä 23

Inception Elaboration Construction Transition

Iterative model: RUP

(Rational Unified Process)

20.1.2014 TIE-21100&21106/K.Systä 24

Key points so far

• Software processes is set of activities in SW production;

software process model is abstract representation

• General process models describe organization of the

process

• Requirements engineering develops software specification

• Design and implementation transfer specification to

executable software

• Validation checks that confirms specification and real user

requirements

• Evolution changes software to meet new requirements

• Process should include activities to cope with the change

20.1.2014 TIE-21100&21106/K.Systä 25

20.1.2014 TIE-21100&21106/K.Systä 26

Now a break and then

• we put the previous discussion into context

• introduction to agile

Different projects - product

20.1.2014

27

Vendor

Customer

research

specification Implem. validation

Sales

ppackaging

TIE-21100&21106/K.Systä

Different project – customer specific

20.1.2014

28

Vendor

Customer

research

specification

Implem. validation

deployment

Call for tender

bid

specification deployment

TIE-21100&21106/K.Systä

Vendor

Different project – customer specific

20.1.2014

29

Vendor

Customer

research

bid

Implement. validation

delployment

Order spec

Specificat.

Tender

call

deployment

order

bid

TIE-21100&21106/K.Systä

Will that work?

• Assumption 1: good requirements can be written if enough effort is put

on them

– But: customer needs change over the time – even during the project

– But: software is abstract until it is seen and tried

• Assumption 2: changes are small

– But: they are not (and address surprising parts)

• Assumption 3: Integration is as easy as glueing components together

– But: the components are implemented by humans

• Assumption 4: schedule is followed

– Actually very seldom

20.1.2014 30 TIE-21100&21106/K.Systä

Iterative, agile

20.1.2014

31

Vendor

Customer

research

Spec.

imp

test

Deploym.

Tender call

bid

Bid a.

spec. Deploym.

demo

demo

imp

test

demo

demo

imp

test

imp

test

demo

demo

Demo means that customer and

vendor investigate together.

If possible, software can be taken

into use.

TIE-21100&21106/K.Systä

20.1.2014 32

Agile -manifest

• February 2001
• 17 ”inventors”
• We are uncovering better ways of developing software

by doing it and helping others do it. Through this work
we have come to value:
– Individuals and interactions over processes and tools
– Working software over comprehensive documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan

 That is, while there is value in the items on the right,
we value the items on the left more.

TIE-21100&21106/K.Systä

Manifesti Suomeksi
Me etsimme parempia keinoja ohjelmistojen
kehittämiseen tekemällä sitä itse ja auttamalla siinä
muita. Tässä työssämme olemme päätyneet arvostamaan
• Yksilöitä ja vuorovaikutusta enemmän kuin prosesseja

ja työkaluja
• Toimivaa sovellusta enemmän kuin kokonaisvaltaista

dokumentaatiota
• Asiakasyhteistyötä enemmän kuin

sopimusneuvotteluita
• Muutokseen reagoimista enemmän kuin suunnitelman

noudattamista.
Vaikka oikeallakin puolella on arvoa, me arvostamme
vasemmalla olevia asioita enemmän.

20.1.2014 TIE-21100&21106/K.Systä 33

Five principles of Agile

Customer
involvement

Through the project. Provide and prioritize
requirements, evaluate iterations

Incremental
delivery

Customer specifies the increments

People not
process

Skill recognized and exploited; Team should
decide on ways of working

Embrace
change

Plan and design for change

Maintain
simplicity

Both in process and software

20.1.2014 TIE-21100&21106/K.Systä 34

Plan-driven vs. agile specification

20.1.2014 TIE-21100&21106/K.Systä 35

Requirements
engineering

Design and
implementation

Requirements
specification

Requirements
engineering

Design and
implementation

Problems in realizing Agile

• Getting customer commitment and trust is
difficult

• Some team members do not have suitable
personalities

• Prioritizing changes is difficult – especially if
there are many stakeholders

• Maintaining simplicity requires extra work

• Cultural changes through the company
(Agile training should start from management)

20.1.2014 TIE-21100&21106/K.Systä 36

Extreme programming

• Well-known method developed by Kent Beck
• (only briefly covered by Haikala&Mikkonen, but

internet is full of resources)

• Requirements are expressed as scenarios called User
Stories

• which are implemented directly as series of tasks
• Programmers work in pairs and develop tests for each

task before writing the code
• All tests must be successfully executed when new code

is integrated

20.1.2014 TIE-21100&21106/K.Systä 37

XP release cycle

20.1.2014 TIE-21100&21106/K.Systä 38

Select
User Stories

for this sprint

Break down
stories to task

Plan release

Develop/
Integrate/

Test

Release
software

Evaluate
System

XP (Extreme programming)

26.8.2013 TIE-02300/Kari Systä 39

http://www.extremeprogramming.org/

XP Practices
Practice/principle Description

Incremental
planning

Small releases Minimun useful is implemented first; frequent releases

Simple design Spend enough time in design

Test-driven
development

Test written before code, automated tests

Refactoring All team members should refactor code to keep simple and
maintainable

Pair programming Check each others’ work; support

Collective
ownership

No islands of responsibilities; every body can change everything

Continuous
integration

Whenever something is ready it is integrated; always test

Sustainable pace Large amounts of overtime is not sustainable

On-site customer Continuous access to customer

20.1.2014 TIE-21100&21106/K.Systä 40

About pair-programming

• Supports collective ownership and
responsibility

• Informal review because each line of code has
been seen more than one person

• Supports refactoring

• Fosters learning from colleaques

• Research on productivity gives mixed results

20.1.2014 TIE-21100&21106/K.Systä 41

20.1.2014 42

Scrum

• Framework for agile and iterative developmet

• Jeff Sutherland, John Scumniotales, and Jeff
McKenna OOPSLA 95

TIE-21100&21106/K.Systä

20.1.2014 43

Scrum-rooles
• Pigs

– Scrum master

– Product owner

– Team members

• Chicken
– Stakeholders (customer,….)

– Managers

TIE-21100&21106/K.Systä

XP vs Scrum

• XP has typically shorter iterations (1-2w
instead of 2-4w)

• Scrum does not allow changes into sprints

• XP is work in strict priority order

• Scrum does not prescribe any engineering
practices

• Scrum focuses more on management aspects

20.1.2014 TIE-21100&21106/K.Systä 44

Learning goals of today and
the whole course

• What are process models and why they exists?

• Know basics of a few well-known process models

• And what are the motivations behind the models

– To ”behave better”

– (Some day) to select life-cycle model for your
organization

• Know how to participate in the work efficiently

20.1.2014 TIE-21100&21106/K.Systä 45

Initial content of lectures

• Introduction
• Life-cycle models, their

background
• Project management, product

management, project planning –
in general management aspects

• Scrum in details
• Kanban, Customer Development

and DevOps details
• Requirement definition,

requirement management,
requirements prioritization

• Version management,
configuration management,
continuous integration

• Architecture issues, role of
architect, architectural quality
attributes, product families, ….
(TIE-21300 will go deeper)

• Testing and quality assurance
(TIE-21200 will go deeper)

• “Quality systems” and process
improvement

• Embedded and real-time systems
(other courses will go deeper)

• Safety-critical and dependable
systems

• Effort estimation
• Software business, software

start-ups
• Recap

2014-01-13 TIE-21100/21106 46

Links and further reading

• Managing the Development of Large Software Systems(Royce, 1970)
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

• Walt Scacchi, Process Models in Software Engineering, in Encyclopedia of
Software Engineering, 2 nd Edition, John Wiley and Sons, Inc, Dec 2001.
http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf

• “Competing” lecture:
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf

• Spiral model revisited by Barry Boehm him self:
http://www.sei.cmu.edu/reports/00sr008.pdf

• RUP best practices by IBM:
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251
/1251_bestpractices_TP026B.pdf

• Lot of good material about agile methods:
http://www.agilealliance.org/resources/

20.1.2014 TIE-21100&21106/K.Systä 47

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
https://ece.uwaterloo.ca/~se464/06ST/lecture/02_life-cycle-models.pdf
http://www.sei.cmu.edu/reports/00sr008.pdf
http://www.sei.cmu.edu/reports/00sr008.pdf

The following slides postponed
to next lecture

20.1.2014 TIE-21100&21106/K.Systä 48

20.1.2014 49

Burndown -Chart
• Done -> 100% done

• Velocity -> The velocity is calculated by counting the number
of units of work completed in a certain interval
(sprint in case of Scrum)

• When task is done value in chart is reduced

• If the task grows value is increased

TIE-21100&21106/K.Systä

20.1.2014 50

Timeboxing
• http://guide.agilealliance.org/guide/timebox.html:

– A timebox is a previously agreed period of time during which
a person or a team works steadily towards completion of
some goal. Rather than allow work to continue until the goal
is reached, and evaluating the time taken, the timebox
approach consists of stopping work when the time limit is
reached and evaluating what was accomplished

• Ways to manage risks
• Fast response
• Makes requirement management more rigid

TB1 TB2 TB3

TIE-21100&21106/K.Systä

http://guide.agilealliance.org/guide/timebox.html
http://guide.agilealliance.org/guide/timebox.html

Iron triangle

Time/

Schedule
Resources

Scope/features

20.1.2014 TIE-21100&21106/K.Systä 51

Quality

