TIE-21100 Ohjelmistotuotannon menetelmat
TIE-21106 Software Engineering Methodology

The staff

Kari Systa, lectures

Tero Ahtee, practicalities and bureaucracy,
overall coordination, weekly exercises, project

Marko Leppanen, weekly exercises
Marie-Elise Kontro, weekly exercises, project

Lecture 1 - introduction

Course

* Learning goals, requirements, assumed
packground of students

* Practical arrangements

* Material

e Position of the course in our curriculum
Software engineering

 What is Software engineering anyways?

Goals of this lecture

* This course
— What to expect
— Am | in right course
— How to pass

* Software Engineering

— What is Software Engineering

Learning goals

« ROCK/POP
— Basic skills needed in software project work in different
roles
e (Content

— Planning and running of software projects. Effort
estimation and tracking techniques. Quality systems.

— Software life-cycle models, their background, benefits
and drawbacks.

— Software quality, maintainability, usability, dependable
systems.

— Supporting activities: version- and configuration
manhagement, requirements management, product
manhagement, documentation

This is not a programming course

* But understanding of challenges in
programming and basic programming skills are
needed
— Our project will make you to do simple

programming

* Programming and SW design skills are
appreciated, but we have different courses for
that.

21100/ Project
21106 work |

Bachelor ievel Masters level

2014-01-13 TIE-21100/21106 7

A bit of history of this course

Johdanto
(Intro to SE)

Ohjelmistotuo-
tannon menetelmat

Software engineering

methodology

2014-01-13

Software evolution
& maintenance

21100/
21106

TIE-21100/21106

Project
work

Position in study modules

* Pervasive Computing

— Especially for Software Engineering specialization
(4th year)

* Ohjelmistotuotannon menetelmat/
Software Engineering
— Compulsory (3rd year)

* Ohjelmistotekniikka/
Software Systems

— Complementary course

A quick background survey

* Major of your bachelor degree?
— Telecom
— Digital and computer technology
— Electrical engineering

— Management, business or production
technologies

— Other
 OtuPK/JOTU fall 20137

A quick background survey

* How many have programmed for salary?

* Who has been member of a programming
team of more than 3 persons?

 Who has used version management tools?
— SVN?
— GIT?
— Other?

Learning goals rephrased
l.e. the relevance

Organization of the SW development

— Why important, why difficult?

— Learn to plan and organize

What (in addition to how)

— Make SW that clients and users need and want?

Quality
— What it is and how to achieve?

Business
— How much SW development costs — and why

Buzz works

Agile, Scrum,
Requirements, Waterfall,
Quality Systemes,
COCOMO, CMM, UML,
RUP, XP,

Practical arrangements

e Lectures

— Mondays, TB109, 1415 - 1600
— Thursdays, TB103, 1015 -1200

Most lectures will be on Mondays, Thursdays are used
when we have quest lectures

* Weekly exercises
— Some practical hand’s on
* Project

— A simple SW project to be planned, organized,
executed and reported

Weekly exercises
by Marie-Elise Kontro, Tero Ahtee and Marko Leppanen

 We start from 8 groups, but most probably the least
popular will be discontinued

* Times
— TUE 10:15-12:00 TC131 11
— TUE 12:15-14:00 TC131 16
— WED 10:15-12:00 TC163 08
— WED 12:15-14:00 TC131 15
— WED 14:15-16:00 TC128 11
— WED 16:15 - 18:00 TB207/ 05
— THU 12:15-14:00 TC163/TC131 20
— THU 14:15 - 16:00 TC163 13

* Please sign-up if you haven’t already!

First weekly exercise

Read the arcticle:
http://www.cs.nott.ac.uk/~cah/G51ISS/Documen
ts/NoSilverBullet.html| before

Think about the following questions
What is “silver bullet"?

What makes SW development so difficult —
according to article?

What are the benefits of incremental SW
development?

http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html
http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html
http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html

Project

A simple SW project is
— Planned

— Requirements are defined and prioritized
— Executed in 3 or 4 "sprints”

The work includes effort estimation, tracking
and reporting

At the end we will have a seminar where
 Teams represent their project and end result
* Winner(s) is/are selected

The staff

Kari Systa, lectures

Tero Ahtee, practicalities and bureaucracy,
overall coordination, weekly exercises, project

Marko Leppanen, weekly exercises
Marie-Elise Kontro, weekly exercises, project

Passing and grading

Lectures

— Not compulsory but will be useful for exam
Exam

— 24 points

Weekly exercises

— 6 points

Project

— 6 points

Initial content of lectures

Introduction

Life-cycle models, their
background

Project management, product
management, project planning

Scrum in details

Kanban, Customer Development
and DevOps details

Requirement definition,
requirement management,
requirements prioritization

Version management,
configuration management,
continuous integration

Architecture issues, role of
architect, architectural quality
attributes, product families,
(TIE-21300 will go deeper)

Testing and quality assurance
(TIE-21200 will go deeper)

“Quality systems” and process
improvement

Embedded and real-time systems
(other courses will go deeper)

Safety-critical and dependable
systems

Effort estimation

Software business, software
start-ups

Recap

Material

Slides from lectures

Haikala, Mikkonen: Ohjelmistotuotannon
kaytannot

Sommerville: Software engineering, Ninth
edition
Links will be collected to the web page.

Key drivers for redesign of this course

* Agile methods are dominant in the industry
— But far too often not understood

e Compared to old times, majority of our students are
employed by SME instead of big companies
— Nokia

* One key reason for failed SW projects is poor customer —
developer discussion

* Internet and Cloud influence everything

* Changes in other courses => this course needs to
synchronize with those changes

* International version (TIE-21106) should not be a specific
version

— We give and demand the same to and from all

What is Software Engineering

A few definitions

e ” Software engineering may be defined as the
systematic design and development of software
products and the management of the software
process”

— Mills, H.D. , IBM Systems Journal
Vol19, Issue: 4, 1980

e “Software Engineering is the study and
application of engineering to the design,
development, and maintenance of software.”

— http://en.wikipedia.org/wiki/Software engineering

Ohjelmistokriisi (Software Crisis)

 Term was invented at the first NATO Software
Engineering Conference in 1968

 Symptoms (then and still)
— Projects running over-budget.
— Projects running over-time.
— Software was very inefficient.
— Software was of low quality.
— Software often did not meet requirements.

— Projects were unmanageable and code difficult to
maintain.

— Software was never delivered.

A guote

 “The major cause of the software crisis is that the
machines have become several orders of magnitude
more powerful! To put it quite bluntly: as long as
there were no machines, programming was no
problem at all; when we had a few weak computers,
programming became a mild problem, and now we
have gigantic computers, programming has become
an equally gigantic problem.”

-- E. Dijkstra, 1972 Turing Award Lecture

Three SW crisis

e 60-70’s
— Problem: Assembly programming

— Solution: High-level programming languages (Fortran, C,
Cobol)

e 80-90’s
— Problem: Development and maintenance of complex
programs (millions of lines, many developer)

— Solution: Libraries, object-oriented programming,
architecture, testing, review practices

— Solution: Good advanced design; extensive documentation

e 2000--

— Problem: software does not meet real needs of the users
— Solution: Agile methods

”Silver bullet”

* “There is no single development, in either
technology or in management technique, that
by itself promises even one order-of-
magnitude improvement in productivity, in
reliability, in simplicity.”

* "No Silver Bullet — Essence and Accidents of Software
Engineering" is a widely discussed paper on software
engineering written by Fred Brooks in 1986.

From needs to
software

Need/idea

Develop Order project

Select suplier

| Implement. |

.
| Test |

v
|

Deployment .
| | ~>|Ma|ntenance|—>| Closure

2014-01-13 TIE-21100/21106 29

Problems — for customer point of view

Timetable does not hold

Buldget does not hold

Disagreement in project...

Quality problems

Changing personel in...

Communication problems
Problems in contracts

Problems in pricing model

Problems in inter-personal...

No crisis

Changes in company...

Lahde: tietotekniikan liiton, ohjelmistoyrittdjien ja Celkee OY:n tutkimus

2014-01-13

'"'um

T

(52}

10 15

TIE-21100/21106

25

35

40

45

50

30

Problems — provider view

Communication problems
Disagreement of project content
Timetable does not hold
Changes in personel

Quality does not hold

Budget does not hold

No crisis

Inter-personal problems
Problems in pricing model
Problems in contract

Changes in company structure

I.Hl””[

o

5 10 15 20

Jo1.kdhde: tietotekniikan liiton, ohjelmistgyrittdjien ja Celkee OY:n tutkimus

25

Some definitions by Sommerville (p.6)

Good software should deliver the required functionality and
performance to the user and should be maintainable, dependable,
and usable

Software engineering is an engineering discipline that is concerned
with all aspects of software production

Fundamentals of software engineering are software specification,
software development, software validation, and software evolution

Computer science focuses on theory and fundamentals; software
engineering is concerned with practicalities of developing and
delivering useful software

System engineering is concerned with all aspects of computer-
based systems development ... software, hardware,

Roughly 60% of the cost are development and 40% about
validation. For custom software evolution costs often exceed
development cost

Software Engineering Ethics

Software Engineering Ethics

Confidentiality
Competence

Intellectual Property Rights
Computer Misuse

Software Engineering Code of Ethics and Professional Practice
(Version 5.2) the ACM and the IEEE-CS as the standard for
teaching and practicing software engineering.

* See short and long verion at
http://www.acm.org/about/se-code

http://www.acm.org/about/se-code
http://www.acm.org/about/se-code
http://www.acm.org/about/se-code

Software engineers shall commit themselves to making the analysis,
specification, design, development, testing and maintenance of software a
beneficial and respected profession. In accordance with their commitment to
the health, safety and welfare of the public, software engineers shall adhere
to the following Eight Principles:

1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in
the best interests of their client and employer consistent with the public
interest.

3. PRODUCT - Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence
in their professional judgment.

5. MANAGEMENT - Software engineering managers and leaders shall
subscribe to and promote an ethical approach to the management of
software development and maintenance.

6. PROFESSION - Software engineers shall advance the integrity and
reputation of the profession consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their
colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the
practice of their profession and shall promote an ethical approach to the
practice of the profession.

What is software engineering

Customer

Lifecycle models

Algoriths

Project mgmt

Data structures
Progr. languages
Architectures

Testi

Developer

ation

2014-01-13 TIE-21100/21106 37

Operation

2014-01-13

Extended view

Developers

TIE-21100/21106

38

SWEBOK Guide V3.0 Topics

http://www.computer.org/portal/web/swebok

Chapter 1: Software Requirements

Chapter 2: Software Design

Chapter 3: Software Construction

Chapter 4: Software Testing

Chapter 5: Software Maintenance

Chapter 6: Software Configuration Management
Chapter 7: Software Engineering Management
Chapter 8: Software Engineering Process

Chapter 9: Software Engineering Models and Methods
Chapter 10: Software Quality

Chapter 11: Software Engineering Professional Practice
Chapter 12: Software Engineering Economics

Chapter 13: Computing Foundations

Chapter 14: Mathematical Foundations

Chapter 15: Engineering Foundations

http://www.computer.org/portal/web/swebok

Software requirements

Key areas

 Fundamentals and definition

* Requirements Process and management

* Requirements Elicitation; sources and techniques
 Requirements Analysis

* Requirements Specification and documentation

* Requirements Validation

* Practical Considerations, chance tracing etc

e Software Requirements Tools

Basics have been covered in introduction course, here we
go a bit deeper and concentrate on bold topics

Sommerville Chapter 4, Haikala&Mikkone Chapter 3

Software design and construction

 Examples of topics
— Languages
— Concurrency
— Data bases
— Architectures

* We have plenty of other courses — not the
focus in this course — we assume student to
know quite a lot already

 Sommerville Chapters 6 and 7. Haikala &
Mikkonen Chapter 14

Software Testing

Topics
e Software Testing Fundamentals
* Test Levels, targets and objectives

* Test Techniques
* Test-Related Measures

* Test Process
e Software Testing Tools

A separate course devoted, but in this course we
discuss about process and connection to overall
process.

Sommerville Chapter 8, Haikala&Mikkonen Chapter
16

Software Maintenance

Topics
e Software Maintenance Fundamentals

* Key Issues in Software Maintenance, technical,
management, cost, measurement

e Maintenance Process and activities

* Techniques for Maintenance, Program,
Comprehension, Reengineering, Reverse Engineering,
Migration, Retirement

e Software Maintenance Tools

Since evolution course was discontinued, we will basic
cover maintenance and evolution in this course.

Sommerville Chapter 9, Haikala&Mikkonen mentions in
several places

Software Configuration Management

Topics
 Management of the SCM Process
» Software Configuration Identification

— Identifying Items to Be Controlled
— Software Library
* Software Configuration Control
— Requesting, Evaluating, and Approving Software Changes
— Implementing Software Changes
— Deviations and Waivers
e Software Configuration Status Accounting
e Software Configuration Auditing
e Software Release Management and Delivery
— Software Building
— Software Release Management
e Software Configuration Management Tools

One lecture, Chapter 25 in Sommerville, Chapter 13 Haikala&Mikkonen

Software Engineering Management
Topics,

Initiation and Scope Definition. Feasibility analysis
Software Project Planning

Software Project Enactment/implementation, monitoring
Review and Evaluation

Closure, Determining Closure, Activities

Software Engineering Measurement

Software Engineering Management Tools

In this cource one lecture devoted, also discussed in
other lectures. Sommerville Chapters (18,) 22-26.
Haikala&Mikkonen: Chapter 12

Software Engineering Process

Topics

Software Process Definition — management and
infrastructure

Software Life Cycles , Categories, Models,
Adaptation

Software Process Assessment and Improvement
Software Measurement
Software Engineering Process Tools

Especially the life-cycle models are essential
content for this course. Sommerville chapters 2, 3
(and 18), Haikala&Mikkonen Chapter 2.

Software Engineering Models and Methods
Topics
* Modeling
* Types of Models
* Analysis of Models
e Software Engineering Methods

Many notations have been discussed in other
courses, but general concepts will come in this
course, too.

Sommerville Chapter 5, Haikala&Mikkonen
Chapters 4-10 (with requirement view point)

Software Quality

Topics

e Software Quality Fundamentals, Culture,
Ethics, value and cost

e Software Quality Management Processes
* Practical Considerations
* Software Quality Tools

One lecture at least — but also covered in other
courses. Sommerville Chapter 24,
Haikala&Mikkonen Chapter 11

Remaining topics
e Software Engineering Professional Practice
(ethics, legal, communication,....)
— Some elements will be included

* Software Engineering Economics

e Some elements will be included

 Computing Foundations,
Mathematical Foundations,
Engineering Foundations

— Not in this course — there are other courses

Goals of this lecture

* This course
— What to expect
— Am | in right course
— How to pass

* Software Engineering

— What is Software Engineering
— Chapters 1 in both books

First weekly exercise

Read the arcticle:
http://www.cs.nott.ac.uk/~cah/G51ISS/Documen
ts/NoSilverBullet.html| before

Think about the following questions
What is “silver bullet"?

What makes SW development so difficult —
according to article?

What are the benefits of incremental SW
development?

http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html
http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html
http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html

Links to material

Software Engineering Body of Knowledge:
http://www.computer.org/portal/web/swebok

Ethics http://www.acm.org/about/se-code

Silver bullet (e.qg.)
http://www.cs.nott.ac.uk/~cah/G511SS/Docum
ents/NoSilverBullet.html

Chapter 1 in both books

2014-01-13 TIE-21100/21106 52

http://www.computer.org/portal/web/swebok
http://www.acm.org/about/se-code
http://www.acm.org/about/se-code
http://www.acm.org/about/se-code
http://www.acm.org/about/se-code
http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html
http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html
http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html

