
Lecture 12

Software architecture,

maintenance & evolution

07.4.2014

7.4.2014 1 TIE-21100/21106; K.Systä

7.4.2014 TIE-21100/21106; K.Systä 2

Week Lecture Exercise

10.3 Quality in general;

Quality management systems

Patterns

17.3 Dependable and safety-critical systems ISO9001

24.3 Work planning; effort estimation Code inspections

31.3 Version and configuration management Effort estimation

7.4 Role of software architecture; product

families; software evolution

 ?

14.4 Specifics of some domains, e.g. web

system and/or embedded and real time

systems

Break?

21.4 Easter Break?

28.4 Software business, software start-ups ?

5.5 Last lecture; summary; recap for exam ?

Content of today’s lecture

• Remaining topics from last week

• Role of software architecture

– Architecture and processes and project
management

• Software evolution

– We used to have a course about this

7.4.2014 TIE-21100/21106; K.Systä 3

31.03.2014 WE RUN OUT OF

TIME AND STOPPED HERE.

FOLLOWING SLIDES WILL BE

COVERED 7.4

7.4.2014 TIE-21100/21106; K.Systä 4

Release management

7.4.2014 TIE-21100/21106; K.Systä 5

About release management

• Releases go to external customers/users the vendor should be

able to answer questions on that particular release.

• Often include major and minor releases

– Powerpoint 14.0.7116.5000 (32-bit)

– Thunderbird 17.0.11

• Customer-specific and mass-market SW impose different

challenges

• When problem occurs the HW configuration should available

• Full traceability is expected

• Releases should be well tested, well documented, …

• Installation/deployment need to be planned

• Updates need to be planned

– Technical, commercial

7.4.2014 TIE-21100/21106; K.Systä 6

But on the other hand, sometimes …

IDEAS

PRODUCT DATA

BUILD LEARN

MEASURE

Code Faster

Unit Tests
Usability Tests

Continuous Integration
Incremental Deployment

Free & Open-Source Components
Cloud Computing

Cluster Immune System
Just-in-time Scalability

Refactoring
Developer Sandbox

Minimum Viable Product

Measure Faster
Split Tests
Clear Product Owner
Continuous Deployment
Usability Tests
Real-time Monitoring
Customer Liaison

Learn Faster

Split Tests
Customer Interviews
Customer Development
Five Whys Root Cause Analysis
Customer Advisory Board
Falsifiable Hypotheses
Product Owner Accountability
Customer Archetypes
Cross-functional Teams
Semi-autonomous Teams
Smoke Tests

Funnel Analysis
Cohort Analysis

Net Promoter Score
Search Engine Marketing

Real-Time Alerting
Predictive Monitoring

7.4.2014 TIE-21100/21106; K.Systä 7

Continuous delivery/deployment;

A/B testing

• Sometimes it is important to get fast feedback from market

– Lean Startup

• Also part of DevOps

• Used for development of customer software and Internet-

services

• A/B testing (split testing):

– Randomly give different users different versions of the

system and systematically compare.

7.4.2014 TIE-21100/21106; K.Systä 8

One claim
(http://blog.crisp.se/2013/02/05/yassalsundman/continuous-

delivery-vs-continuous-deployment)

7.4.2014 TIE-21100/21106; K.Systä 9

Key points of release managment

• System building is the process of assembling system

components into an executable program to run on a target

computer system.

• Software should be frequently rebuilt and tested immediately

after a new version has been built.

– This makes it easier to detect bugs and problems that have

been introduced since the last build.

• System releases include executable code, data files,

configuration files and documentation.

• Release management involves making decisions on system

release dates, preparing all information for distribution and

documenting each system release

7.4.2014 TIE-21100/21106; K.Systä 10

Summary the whole topic

• Configuration management is the management of evolving

system

• Main processes deal with change management, version

management, system building and release management

• Change management assesses proposals and deciding

• Version management keeps track of the different versions

• System building is about assembling into executable system

– executable code, data files, configuration files and

documentation

– How about scripting languages?

• Systems are frequently rebuilt

7.4.2014 TIE-21100/21106; K.Systä 11

Pointers to material

• Haikala & Mikkonen: Chapter 13 ”tuotteenhallinta” (Product

management)

– A bit short chapter – reading of additional material

recommended

• Sommerville: Chapter 25

• Software Engineering knowledge (language bit boring)

http://www.computer.org/portal/web/swebok/swebokv3

• About continuous integration

– http://www.martinfowler.com/articles/continuousIntegration.html

• About continuous deployment:

– http://gofore.github.io/continuous-deployment/#/

7.4.2014 TIE-21100/21106; K.Systä 12

http://www.computer.org/portal/web/swebok/swebokv3
http://www.computer.org/portal/web/swebok/swebokv3
http://www.computer.org/portal/web/swebok/swebokv3
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://gofore.github.io/continuous-deployment/#/
http://gofore.github.io/continuous-deployment/#/
http://gofore.github.io/continuous-deployment/#/
http://gofore.github.io/continuous-deployment/#/

Role of software architectures

7.4.2014 TIE-21100/21106; K.Systä 13

7.4.2014 TIE-21100/21106; K.Systä 14

Role of architect (the person)
http://www.codingthearchitecture.com/pages/book/role.html

7.4.2014 TIE-21100/21106; K.Systä 15

Definition
(http://csse.usc.edu/csse/TECHRPTS/1995/usccse95-500/usccse95-500.pdf)

A software system architecture comprises

• A collection of software and system

components, connections, and constraints.

• A collection of system stakeholders-need

statements.

(a collection of system requirements)

• a rationale which demonstrates that the

components, connections, and constraints

define a system that, if implemented, would

satisfy the collection of system requirements

7.4.2014 TIE-21100/21106; K.Systä 16

Other definitions
Sommerville

• The design process for identifying the sub-systems making up a

system and the framework for sub-system control and

communication is architectural design.

• The output of this design process is a description of the software

architecture.

Swebok

• System architecture: an interacting combination of elements to

accomplish a defined objective. These include hardware,

software, firmware, people, information, techniques, facilities,

services, and other support elements,

• Software architectural design (sometimes called high-level

design): develops top-level structure and organization of the

software and identifies the various components.

• Software detailed design: specifies each component in sufficient

detail to facilitate its construction.

7.4.2014 TIE-21100/21106; K.Systä 17

Two (three) levels

• Architecture in the small is concerned with the architecture of

individual programs. At this level, we are concerned with the

way that an individual program is decomposed into components.

• Architecture in the large is concerned with the architecture of

complex enterprise systems that include other systems,

programs, and program components. These enterprise systems

are distributed over different computers, which may be owned

and managed by different companies.

• Enterprise architecture Enterprise architecture is the organizing

logic for business processes and IT infrastructure reflecting the

integration and standardization requirements of the company's

operating model. The operating model is the desired state of

business process integration and business process

standardization for delivering goods and services to customers.[

7.4.2014 TIE-21100/21106; K.Systä 18

S
o

m
m

e
rv

ill
e

Advantages of explicit architecture

• Stakeholder communication

– Architecture may be used as a focus of discussion by
system stakeholders.

• System analysis

– Means that analysis of whether the system can meet its non-
functional requirements is possible.

• Large-scale reuse

– The architecture may be reusable across a range of systems

– Product-line architectures may be developed.

19 TIE-21100/21106; K.Systä 7.4.2014

Architectural representations

• Simple, informal block diagrams showing entities and

relationships are the most frequently used method for

documenting software architectures.

• But these have been criticised because they lack semantics, do

not show the types of relationships between entities nor the

visible properties of entities in the architecture.

• Depends on the use of architectural models.The requirements

for model semantics depends on how the models are used.

20 TIE-21100/21106; K.Systä 7.4.2014

Box and line diagrams

• Very abstract - they do not show the nature of component

relationships nor the externally visible properties of the sub-

systems.

• However, useful for communication with stakeholders and for

project planning.

21 TIE-21100/21106; K.Systä 7.4.2014

7.4.2014 22

UML

Shape
{abstract}

X
Y

getX
getY
show
hide
move

Point

hide
show

Circle

radius
hide
show

Composite

add
show
hide
move

*

1

composite

leaf leaf

composite

component

TIE-21100/21106; K.Systä

7.4.2014 23

What is architecture design

(translated from Haikala&Mikkonen)

Product from customer

point of view

Implementation

Specification Specification

Architecture design
Product from implementation point of view

architecture principles

component. interfaces,

database solutions,

distribution

-process and communication structure,

-Technology selections, …

TIE-21100/21106; K.Systä

7.4.2014 24

Spagetti

Data structure

Program code

TIE-21100/21106; K.Systä

7.4.2014 25

Structured programming

TIE-21100/21106; K.Systä

Architectural design decisions

 Is there a generic application architecture that can be

used?

 How will the system be distributed?

 What architectural styles are appropriate?

 What approach will be used to structure the system?

 How will the system be decomposed into modules?

 What control strategy should be used?

 How will the architectural design be evaluated?

 How should the architecture be documented?

26 TIE-21100/21106; K.Systä 7.4.2014

Architectural design decisions

 Architectural design is a creative process so the process

differs depending on the type of system being

developed.

 However, a number of common decisions span all

design processes and these decisions affect the non-

functional characteristics of the system.

 The architectural decisions are in a key role

 The reasoning should also be documented

27 TIE-21100/21106; K.Systä 7.4.2014

4 + 1 view model of software architecture

 A logical view, which shows the key abstractions in the system as

objects or object classes.

 A process view, which shows how, at run-time, the system is

composed of interacting processes.

 A development view, which shows how the software is decomposed

for development.

 Haikala&Mikkonen: toteutusnäkymä; implementation view

 A physical view, which shows the system hardware and how

software components are distributed across the processors in the

system.

 Haikala&Mikkonen: sijoittelunäkymä (deployment view)

 Related using use cases or scenarios (+1)

 28 TIE-21100/21106; K.Systä 7.4.2014

Goals of architectural design

• Performance

– e.g. no extra communication

• Understandability

– Developers and stakeholders understand

– KISS (Keep It Simple, Stupid)

– Should be familiar

• Maintainability

– Separation of concerns

– Changes are local

• Work division

TIE-21100/21106; K.Systä 29 7.4.2014

Architecture and waterfall

7.4.2014 TIE-21100/21106; K.Systä 30

System

requirements

Software

requirements

Analysis

Program

design

Coding

Testing

Operations Maintenance

Architecture

design

Detailed

design

Interface

design

Careful design

before implementation

7.4.2014 31

Architecture and Scrum

TIE-21100/21106; K.Systä

Frequent architecture

decisions and re-factoring

Architecture design in Agile processes

• The idea of most Agile processes is that system is

developed interatively.

• The architecture selected for first sprint is not

necessarily valid for remaining sprints

Refactoring is needed

– Could use separate re-factoring sprints, or

– add re-factoring tasks to backlog

• Often it is necessary decide the main architecture

principles in a ”pregame”

– Especially big projects that require several teams

7.4.2014 TIE-21100/21106; K.Systä 32

Veli-Pekka Eloranta and Kai Koskimies. 2012. Aligning

architecture knowledge management with Scrum. In

Proceedings of the WICSA/ECSA 2012 Companion Volume

(WICSA/ECSA '12). ACM, New York, NY, USA, 112-115.

• architectural knowledge management (AKM)

• architectural knowledge base (AKB)

• Architecture evaluation methods ATAM ja DCAR

7.4.2014 TIE-21100/21106; K.Systä 33

7.4.2014 TIE-21100/21106; K.Systä 34

7.4.2014 TIE-21100/21106; K.Systä 35

Conway’s law

• organizations which design systems ... are constrained to

produce designs which are copies of the communication

structures of these organizations

• Conway, Melvin E. (April 1968), "How do Committees Invent?",

Datamation 14 (5): 28–31,

– Reprint available:

http://www.melconway.com/research/committees.html

7.4.2014 TIE-21100/21106; K.Systä 36

http://www.melconway.com/research/committees.html
http://en.wikipedia.org/wiki/Datamation

Software maintenance
and evolution

7.4.2014 TIE-21100/21106; K.Systä 37

Once upon a time

7.4.2014 TIE-21100/21106; K.Systä 38

Lehman, M. M.. On Understanding Laws, Evolution, and
Conservation in the Large-Program Life Cycle.

Journal of Systems and Software 1: 213–221, 1980.

• Claim: 30%-70% on top of initial development
is spent for maintenance

• Lehman divides software into three categories
– S-type programs are those that can be specified

formally

– P-type programs cannot be specified but an
iterative process is used to find a working
solution;

– E-type programs are embedded in the real world
and become part of it thereby changing it

7.4.2014 TIE-21100/21106; K.Systä 39

Laws of evolution (by Lehman)
• Continuing Change. All E-type systems need continuous adaptation or they become

progressively less satisfactory.

• Increasing Complexity. Because all E-type systems evolve, their complexity increases
unless work is done to reduce it.

• Self-Regulation. E-type system evolution process is self-regulating with distribution of
product and process measures close to normal.

• Conservation of Organizational Stability. The average effective global activity rate in an
evolving E-type system is invariant over a product lifetime.

• Conservation of Familiarity. As an E-type system makes everything associated with it
evolve, developers, sales personnel, users, must maintain mastery of its content and
behavior to achieve satisfactory evolution. Because too rapid growth diminishes that
mastery, the average incremental growth remains invariant as the system evolves.

• Continuing Growth. The functional content of an E-type system must be continually
increased to maintain user satisfaction.

• Declining Quality. The quality of E-type systems will appear to be declining unless they
are rigorously maintained and adapted to operational environment changes.

• Feedback System. E-type evolution processes constitute multi-level, multi-loop, multi-
agent feedback systems and must be treated as such to achieve significant
improvement over any reasonable base.

7.4.2014 TIE-21100/21106; K.Systä 40

Another view to evolution

• Software is changed because

– It has bugs or poor performance

– It needs new features

– Environment changes

• Existing software is also reused in other
projects (at least partly)

7.4.2014 TIE-21100/21106; K.Systä 41

Example: SW of Smart phone
• New products

– with new SW features,

– utilizing improved HW

 have been developed over several years

7.4.2014 TIE-21100/21106; K.Systä 42

Terms

• Legacy software (perintöohjelmat)

• Program comprehension (ohjelmien
ymmärtäminen)

• Program analysis (ohjelmien analysointi)

• Software metrics (metriikat, mittaaminen)

• Refactoring

• Reuse engineering, reuse re-engineering

• Wrapping (kääriminen)

7.4.2014 TIE-21100/21106; K.Systä 43

Program analysis

• Needed for comprehension

• Architecture is not known, not documented,
or documentation is out of date

• Sometimes ”reverse engineering” is needed

– New documents about program structure, data,
control flow….

•

7.4.2014 TIE-21100/21106; K.Systä 44

Material

• Role of architect:
http://www.codingthearchitecture.com/pages/book/role.html

• About continuous integration
– http://www.martinfowler.com/articles/continuousIntegration.html

• About continuous deployment:
– http://gofore.github.io/continuous-deployment/#/

• Good article about architecture ” On the Definition of Software
System Architecture”
http://csse.usc.edu/csse/TECHRPTS/1995/usccse95-500/usccse95-
500.pdf

• Lehman, M. M.. On Understanding Laws, Evolution, and
Conservation in the Large-Program Life Cycle.
Journal of Systems and Software 1: 213–221, 1980

7.4.2014 TIE-21100/21106; K.Systä 45

http://www.codingthearchitecture.com/pages/book/role.html
http://www.codingthearchitecture.com/pages/book/role.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://gofore.github.io/continuous-deployment/#/
http://gofore.github.io/continuous-deployment/#/
http://gofore.github.io/continuous-deployment/#/
http://gofore.github.io/continuous-deployment/#/
http://csse.usc.edu/csse/TECHRPTS/1995/usccse95-500/usccse95-500.pdf
http://csse.usc.edu/csse/TECHRPTS/1995/usccse95-500/usccse95-500.pdf
http://csse.usc.edu/csse/TECHRPTS/1995/usccse95-500/usccse95-500.pdf
http://csse.usc.edu/csse/TECHRPTS/1995/usccse95-500/usccse95-500.pdf
http://csse.usc.edu/csse/TECHRPTS/1995/usccse95-500/usccse95-500.pdf
http://csse.usc.edu/csse/TECHRPTS/1995/usccse95-500/usccse95-500.pdf

7.4.2014 TIE-21100/21106; K.Systä 46

Week Lecture Exercise

10.3 Quality in general;

Quality management systems

Patterns

17.3 Dependable and safety-critical systems ISO9001

24.3 Work planning; effort estimation Code inspections

31.3 Version and configuration management Effort estimation

7.4 Role of software architecture; product

families; software evolution

 ?

14.4 Software business, software start-ups Break?

21.4 Easter Break?

28.4 Specifics of some domains, e.g. web

system and/or embedded and real time

systems

 ?

5.5 Last lecture; summary; recap for exam ?

